
Applied Mathematics and Computation xxx (2012) xxx–xxx
Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc
Unconventional initialization methods for differential evolution

Musrrat Ali a,⇑, Millie Pant b, Ajith Abraham c

a Department of Computer Science, Sungkyunkwan University, Suwon 440467, Republic of Korea
b Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
c Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research Excellence, P.O. Box 2259, Auburn, WA 98071-2259, USA

a r t i c l e i n f o
Keywords:
Stochastic optimization
Differential evolution
Initial population
Random numbers
Quadratic interpolation
Nonlinear simplex method
0096-3003/$ - see front matter � 2012 Elsevier Inc
http://dx.doi.org/10.1016/j.amc.2012.10.053

⇑ Corresponding author.
E-mail addresses: musrrat.iitr@gmail.com, ali82d

Please cite this article in press as: M. Ali et
(2012), http://dx.doi.org/10.1016/j.amc.2012.1
a b s t r a c t

The crucial role played by the initial population in a population-based heuristic optimiza-
tion cannot be neglected. It not only affects the search for several iterations but often also
has an influence on the final solution. If the initial population itself has some knowledge
about the potential regions of the search domain then it is quite likely to accelerate the rate
of convergence of the optimization algorithm. In the present study we propose two
schemes for generating the initial population of differential evolution (DE) algorithm.
These schemes are based on quadratic interpolation (QI) and nonlinear simplex method
(NSM) in conjugation with computer generated random numbers. The idea is to construct
a population that is biased towards the optimum solution right from the very beginning of
the algorithm. The corresponding algorithms named as QIDE (using quadratic interpola-
tion) and NSDE (using non linear simplex method), are tested on a set of 20 traditional
benchmark problems with box constraints and 7 shifted (non-traditional) functions taken
from literature. Comparison of numerical results with traditional DE and opposition based
DE (ODE) show that the proposed schemes considered by us for generating the random
numbers significantly improves the performance of DE in terms of convergence rate and
average CPU time.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

DE is comparatively a recent addition to class of population based search heuristics. Nevertheless, it has emerged as one
of the techniques most favored by engineers for solving continuous optimization problems. DE [1] has several attractive fea-
tures. Besides being an exceptionally simple evolutionary strategy, it is significantly faster and robust for solving numerical
optimization problems and is more likely to find the function’s true global optimum. Also, it is worth mentioning that DE has
a compact structure with a small computer code and has fewer control parameters in comparison to other evolutionary algo-
rithms. Originally Storn and Price proposed a single strategy for DE, which they later extended to ten different strategies [2].

DE has been successfully applied to a wide range of problems including optimization of process synthesis and design
problems [3], application of DE in image processing [4–6], traveling salesman problem [7], multi class support vector ma-
chine [8], optimization of directional over-current relay settings [9], multi-objective optimization [10] etc.

Despite having several striking features and successful applications to various fields DE is sometimes criticized for its
slow convergence rate for computationally expensive functions. By varying the control parameters the convergence rate
of DE may be increased but it should be noted that it does not affect the quality of solution. Generally, in population based
search techniques like DE an acceptable trade-off should be maintained between convergence and type of solution, which
. All rights reserved.

pt@iitr.ernet.in (M. Ali).

al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
0.053

http://dx.doi.org/10.1016/j.amc.2012.10.053
mailto:musrrat.iitr@gmail.com
mailto:ali82dpt@iitr.ernet.in
http://dx.doi.org/10.1016/j.amc.2012.10.053
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc
http://dx.doi.org/10.1016/j.amc.2012.10.053

2 M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx
even if not a global optimal solution should be satisfactory rather than converging to a suboptimal solution which may not
even be a local solution. Several attempts have been made in this direction to fortify DE with suitable mechanisms to im-
prove its performance. Most of the studies involve the tuning or controlling of the parameters of algorithm and improving
the mutation, crossover and selection mechanism, some interesting modifications that helped in enhancing the performance
of DE include introduction of greedy random strategy for selection of mutant vector [11], modifications in mutation and
localization in acceptance rule [12], DE with preferential crossover [13], crossover based local search method for DE [14],
self adaptive differential evolution algorithm [15], new donor schemes proposed for the mutation operation of DE [16],
DE with Cauchy mutation [17]. There are also work have done on parameter analysis [18] and hybridization [19,20]. All
the modified versions have shown that a slight change in the structure of DE can help in improving its performance. How-
ever, the role of the initial population, which is the topic of this paper, is widely ignored. The opening sentence of these algo-
rithms is usually ‘‘generate an initial population’’ without indicating how this should be done. There is only few literature is
available on this topic [21–24]. An interesting method for generating the initial population was suggested by Rahnamayan et
al. [25,26] in which the initial population was generated using opposition based rule.

To further continue the research in this direction, in this paper we propose two schemes for generating the initial pop-
ulation of basic DE algorithm. These schemes are based on quadratic interpolation (QI) method and nonlinear simplex meth-
od in conjugation with random numbers. The corresponding modified DE versions are named (1) Quadratic interpolation
method called QIDE and (2) non linear simplex method called NSDE. Both QI and NSM are well known local search methods.
Their use provides additional information about the potential regions of the search domain.

In the present study our aim is to investigate the effect of initial population on payoff between convergence rate and solu-
tion quality. Our motivation is to encourage discussions on methods of initial population construction. Performances of the
proposed algorithms are compared with Basic DE and differential evolution initialized by opposition based learning (ODE),
which is a recently modified version of differential evolution [25], on a set of twenty unconstrained benchmark problems and
7 shifted functions.

Remaining of the paper is organized in following manner; in Section 2, we give a brief description of DE. In Section 3, we
have given a brief description of the initialization schemes used in this paper. The proposed algorithms are explained in Sec-
tion 4. Section 5 deals with experimental settings and parameter selection. Benchmark problems considered in the present
study and the results are given in Section 6. The conclusions based on the present study are finally drawn in Section 7.

2. Differential evolution (DE)

DE starts with a population of NP candidate solutions which may be represented as Xi,G, i = 1, . . . ,NP, where i index denotes
the population and G denotes the generation to which the population belongs. The working of DE depends on the manipu-
lation and efficiency of three main operators; mutation, crossover and selection which briefly described in this section.

2.1. Mutation

Mutation operator is the prime operator of DE and it is the implementation of this operation that makes DE different from
other Evolutionary algorithms. The mutation operation of DE applies the vector differentials between the existing population
members for determining both the degree and direction of perturbation applied to the individual subject of the mutation
operation. The mutation process at each generation begins by randomly selecting three individuals in the population. The
most often used mutation strategies implemented in the DE codes are listed below.
Please
(2012
DE=rand=1 : Vi;Gþ1 ¼ Xr1 ;G þ F � ðXr2 ;G � Xr3 ;GÞ; ð1aÞ
DE=rand=2 : Vi;Gþ1 ¼ Xr1 ;G þ F � ðXr2 ;G � Xr3 ;GÞ þ F � ðXr4 ;G � Xr5 ;GÞ; ð1bÞ
DE=best=1 : Vi;Gþ1 ¼ Xbest;G þ F � ðXr1 ;G � Xr2 ;GÞ; ð1cÞ
DE=best=2 : Vi;Gþ1 ¼ Xbest;G þ F � ðXr1 ;G � Xr2 ;GÞ þ F � ðXr3 ;G � Xr4 ;GÞ; ð1dÞ
DE=rand-to-best=1 : Vi;Gþ1 ¼ Xr1 ;G þ F � ðXbest;G � Xr2 ;GÞ þ F � ðXr3 ;G � Xr4 ;GÞ; ð1eÞ
where, i = 1, . . . ,NP, r1, r2, r3 2 {1, . . . ,NP} are randomly selected and satisfy:
r1 – r2 – r3 – i, F 2 [0,1], F is the control parameter proposed by Storn and Price.
Throughout the paper we shall refer to the strategy (1a) which is apparently the most commonly used version and shall

refer to it as basic version.

2.2. Crossover

Once the mutation phase is complete, the crossover process is activated. The perturbed individual, Vi,G+1 = (v1,i,G+1, -
. . . ,vn,i,G+1), and the current population member, Xi,G = (x1,i,G, . . . ,xn,i,G), are subject to the crossover operation, that finally gen-
erates the population of candidates, or ‘‘trial’’ vectors,Ui,G+1 = (u1,i,G+1, . . . ,un,i,G+1), as follows:
uj;i:Gþ1 ¼
v j;i:Gþ1 if randj 6 Cr _ j ¼ k;

xj;i:G otherwise;

�
ð2Þ
cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx 3
where, j = 1 . . . ,n, k 2 {1, . . . ,n} is a random parameter’s index, chosen once for each i, and the crossover rate, Cr 2 [0,1], the
other control parameter of DE, is set by the user.

2.3. Selection

The selection scheme of DE also differs from that of other EAs. The population for the next generation is selected from the
individual in current population and its corresponding trial vector according to the following rule:
Please
(2012
Xi:Gþ1 ¼
Ui:Gþ1 if f ðUi:Gþ1Þ 6 f ðXi:GÞ
Xi:G otherwise

�
ð3Þ
Thus, each individual of the temporary (trial) population is compared with its counterpart in the current population. The one
with the lower objective function value will survive from the tournament selection to the population of the next generation.
As a result, all the individuals of the next generation are as good as or better than their counterparts in the current gener-
ation. In DE trial vector is not compared against all the individuals in the current generation, but only against one individual,
its counterpart, in the current generation. A schematic of the DE algorithm is given in Fig. 1. The pseudo code of algorithm is
given below.

DE pseudo code:

Step 1: The first step is the random initialization of the parent population. Randomly generate a population of (say) NP
vectors, each of n dimensions: xi,j = xmin,j+rand(0,1)(xmax,j � xmin,j), where xmin,j and xmax,j are lower and upper
bounds for jth component respectively, rand (0,1) is a uniform random number between 0 and 1.

Step 2: Calculate the objective function value f(Xi) for all Xi.
Step 3: Select three points from population and generate perturbed individual Vi using Eq. (1a).
Population Size = NP

+ —

F*(Xa – Xb)

F*(Xa – Xb)

F

CR

+

+

Xc
’=Xc + F*(Xa – Xb)

Random noise vector

Xt

Target
Vector

Xa Xb Xc

Random
Vector

Crossover

Trial Vector

X t

Cost of
X i>Xt

X i

Fig. 1. A schematic of differential evolution algorithm.

cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

4 M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx
Step 4: Recombine the each target vector Xi with perturbed individual generated in step 3 to generate a trial vector Ui

using Eq. (2).
Step 5: Check whether each variable of the trial vector is within range. If yes, then go to step 6 else make it within range

using ui,j = 2 � xmin,j � ui,j, if ui,j < xmin,j and ui,j = 2 � xmax,j � ui,j, if ui,j > xmax,j, and go to step 6.
Step6: Calculate the objective function value for vector Ui.

Step 7: Choose better of the two (function value at target and trial point) using Eq. (3) for the next generation.
Step 8: Check whether the convergence criterion is met if yes then stop; otherwise go to step 3.

3. Initial population generation methods used in the present study

In the present study besides using the traditional method of generating the initial population i.e. besides using the com-
puter generated pseudorandom numbers, we have considered three other methods of generating the initial population;
these are quadratic interpolation (QI), nonlinear simplex method (NSM) and Opposition Based Method (OBM). A brief
description of these methods is given as follows:

3.1. Opposition Based Method (OBM)

The use of OBM was suggested by Rahnamayan et al. [25,26], where they used opposition based learning (OBL) to generate
the initial population. The basic idea behind OBL is the simultaneous consideration of an estimate and its corresponding
opposite estimate in order to achieve a better approximation for the current candidate solution. Mathematically, it has been
proven in [27] that the opposite numbers are more likely to be closer to the optimal solution than purely random ones.
Opposite numbers may be defined as:

Opposite Number—If x 2 [l,u] is a real number, then the opposite number x0 is defined by
Please
(2012
x0 ¼ lþ u� x: ð4Þ
Similarly, this definition can be extended to higher dimensions as follows [26].
Opposite n-Dimensional point—If X = (x1,x2, . . . ,xn) is a point in n-dimensional space, where x1,x2, . . . ,xn 2 R and xi 2 [li,ui]

"i 2 {1,2, . . . ,n}. Then the opposite point X 0 ¼ ðx01; x02; . . . ; x0nÞ is completely defined by its components
x0i ¼ li þ ui � xi ð5Þ
Rahmanayan et al. applied their method for generating the initial population for DE algorithm. Their algorithm called ODE
(Opposition based differential evolution) reportedly gave good results on a set of benchmark problems in comparison to the
traditional DE using computer generated random numbers.

3.2. Quadratic interpolation (QI)

QI method is one of the simplest and the oldest direct search method used for solving optimization problems that makes
use of gradient in a numerical way. In this method we try to select the three distinct points (say a, b and c) randomly from the
population. A parabolic curve is then fitted into the selected points and the point lying at the minimum of this quadratic
curve is evaluated.

Mathematically, the new point ri is produced as follows:
ri ¼
1
2
ðb2 � c2Þ � f ðaÞ þ ðc2 � a2Þ � f ðbÞ þ ða2 � b2Þ � f ðcÞ
ðb� cÞ � f ðaÞ þ ðc � aÞ � f ðbÞ þ ða� bÞ � f ðcÞ where i ¼ 1;2; . . . ;NP: ð6Þ
It is clear from Fig. 2 that the fitted function passing through these three points is parabola and new point is produced at
minimum of this parabola.

QI has been used in conjugation with several variants of random search/evolutionary algorithms and has given good re-
sults. Zhang et al. [28] hybridized it with DE. Some other papers using QI approach are [29,30].
Fitted Curve

Real Curve

New Point

Random points

Fig. 2. Parabolic curve of quadratic interpolation.

cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx 5
3.3. Nonlinear simplex method (NSM)

The NSM search method was first introduced by Nelder and Mead in 1965 [31] and is perhaps one of the most widely used
local direct search methods for nonlinear unconstrained optimization. NSM is a derivative-free line search method that was
specially designed for solving traditional unconstrained problems of minimization type, like nonlinear least squares prob-
lem, nonlinear simultaneous equations, and function minimization. The NSM works through a sequence of four elementary
geometric transformations namely; reflection, expansion, contraction and reduction. With the help of these transformations
the simplex can improve itself and come closer to the optimum. To select the appropriate transformation, the method only
uses the values of the function to be optimized at the vertices of the simplex considered. After each transformation, the cur-
rent worst vertex is replaced by a better one. In case of a minimization problem, at the beginning of the algorithm, only that
point of the simplex is moved where the objective function is worst and a point image of the worst point is generated. This
operation is called reflection. If the reflected point is better than all other points, the method expands the simplex in this
direction; otherwise, if it is at least better than the worst one, the algorithm performs again the reflection with the new worst
point. The contraction step is performed when the worst point is at least as good as the reflected point, in such a way that the
simplex adapts itself to the function landscape and finally surrounds the optimum. If the worst point is better than the con-
tracted point, reduction is performed.

The sequence of transformations reflection, expansion, contraction and reduction are illustrated in Figs. 3a–3d
respectively.

The procedure of NSM is outlined as follows:

Step 1: Select n + 1 point randomly from population and evaluate function at these points, and find out Xbest and Xworst.
Step 2: Calculate the centroid of these points excluding the worst point, say Xworst at which function is maximum.
Please
(2012
Xcent ¼
1

nþ 1

Xnþ1

i¼1

Xij

 !
� Xworst;j

" #
j ¼ 1; . . . ;n ð7Þ
Step 3: Reflection: Reflect Xworst through the centroid to a new point X1. And calculate the function value at this point.
Fig. 3a. Reflection of A to D.

Fig. 3c. Contraction of D to F.

Fig. 3b. Expansion of D to E.

cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

Fig. 3d. Reduction of ABC to A0 B0 C0 .

6 M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx

Please
(2012
X1 ¼ Xcent þ aðXcent � XworstÞ where a > 0 is reflection coefficient ð8Þ
Step 4: Expansion: If f (X1) < =f(Xbest) then perform expansion to generate a new point X2 in the expanded region otherwise go
to step 5. If f(X2) < f(Xbest) then replace Xworst by X2 and continue from step1. Otherwise, replace Xworst by X1 and con-
tinue from step 1.
X2 ¼ Xcent þ cðX1 � XcentÞ where c > 1 is expansion coefficient: ð9Þ
Step 5: Contractions: If f(X1) < f(Xworst) then produce a new point X3 by contraction otherwise go to step 6. If f(X3) < f(Xworst)
then replace Xworst by X3 and return to step 1 to continue the search.
X3 ¼ Xcent þ bðXworst � XcentÞ where 0 < b < 1 is contraction coefficient: ð10Þ
Step 6: Reduction: f(X1) > f(Xworst) reduce all the vectors (Xi � Xbest) by one half from Xbest by computing.
Xi ¼ Xbest þ 0:5ðXi � XbestÞ i ¼ 1; . . . ; nþ 1 ð11Þ
Return to step 1 to continue the search.

4. Proposed algorithms

The proposed algorithms, named as Nonlinear Simplex DE (NSDE) and quadratic interpolation DE (QIDE), are structured
in a similar manner as that of basic DE, except in the initialization phase. Here we use NSM and QI in conjugation with com-
puter generated random numbers to generate the initial population. We have made slight changes in the schemes described
in the previous sections. In QI, instead of choosing three random points we have selected only two points randomly while the
third point is chosen as the one having the best fitness value. Likewise, in case of NSM we have replaced the reduction equa-
tion by generating a random point between the lower and the upper bounds.

The initialization phase of NSDE and QIDE consists of the following four steps:

� Using computer generated random numbers construct a population set P having NP points.
� Using QI/NSM construct a population set Q having NP points.
� Merge the two sets (P and Q) to obtain 2*NP points.
� Select NP elite candidates to construct the initial population.

Both QI and NSM schemes are used in conjugation with random numbers. This is done to include an element of random-
ness in the population and to preserve the initial diversity of the population. A pure QI or NSM would have made the initial
search greedy in nature and might have biased the algorithm towards a local region.

With the use of NSM and QI methods, the initial population is provided with the information of the good regions of the
search domain. These methods are not computationally expensive, since for each particle of the initial population one func-
tion evaluation is done, which is inevitable even if we use a randomly distributed initial population.

Once the initialization is complete, the remaining of the algorithms is same as that of the basic DE, defined in Section 2.
A schematic of the algorithms is given in Fig. 4.

4.1. Effects of using the proposed methods to generate initial population:

The initial generation of population applying quadratic interpolation and nonlinear simplex method makes use of the
function value to determine a candidate point for the additional population. As a result in the initial step itself we get a col-
lection of fitter individuals which may help in increasing the efficiency of the algorithm. Consequently, the chances of obtain-
ing the optimum in fewer NFEs increases considerably or in other words the convergence rate of the algorithm becomes
faster.
cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

Generate NP points using
NSM/QI

Combine P and Q to obtain
2NP points

Mutation Crossover Selection

Select NP elite candidates

Apply DE

Set Q

Generate NP points using
computer generated random

numbers

Set P

Fig. 4. A schematic of QIDE/NSDE algorithms.

M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx 7
The working of the proposed algorithms is shown with the help of two test functions; Rosenbrock and Griewank. We gen-
erated an initial population of 100 points within the range [�2,2] for Rosenbrock function and within the range [�600,600]
for Griewank function using basic DE, ODE, QIDE and NSDE. The dispersion of points is illustrated graphically in Figs. 5a–5d
and 6a–6d respectively.

From these illustrations we can observe that while using the proposed algorithms, the search space gets concentrated
around the global optima which lies at (1,1) with objective function value zero, for two dimensional Rosenbrock function
and which lies at (0,0) with objective function value 0, for Griewank function.

When the initial population is constructed using QIDE and NSDE, the large search domain, [�600,600], of Griewank func-
tion is contracted to the range of around [�400,400] while using NSDE whereas it is contracted further to around [�200,200]
when QIDE is used.

5. Experimental setup

With DE, the lower limit for population size, NP, is 4 since the mutation process requires at least three other chromo-
somes for each parent. While testing the algorithms, we began by using the optimized control settings of DE. Population size,
NP can always be increased to help maintain population diversity. As a general rule, an effective NP is between 3 � n and
5 � n, but can often be modified depending on the complexity of the problem. For the present study we performed several
experiments with the population size as well as with the crossover rate and mutation probability rate and observed that for
problems up to dimension 30, a population size of 3 � n is sufficient. But here we have taken fixed population size NP = 100,
which is slightly larger than 3 � n and 500 for the shifted functions. Values of F, outside the range of 0.4–1.2 are rarely effec-
tive, so F = 0.5 is usually a good initial choice. In general higher value of Cr help in speeding up the convergence rate therefore
Fig. 5a. Initial population consisting of 100 points in the range [-2,2] for Rosenbrock function using basic DE.

Please cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
(2012), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

Fig. 5c. Initial population consisting of 100 points in the range [-2,2] for Rosenbrock function using QIDE.

Fig. 5d. Initial population consisting of 100 points in the range [-2,2] for Rosenbrock function using NSDE.

Fig. 5b. Initial population consisting of 100 points in the range [-2,2] for Rosenbrock function using ODE.

8 M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx
in the present study we have taken Cr = 0.9. All the algorithms are executed on a PIV PC, using DEV C++, thirty times for each
problem. Random numbers are generated using the inbuilt random number generator rand () function available in DEVC++.

In every case, a run was terminated when the best function value obtained is less than a threshold for the given
function or when the maximum number of function evaluation (NFE = 106) was reached 5 � 106 for shifted functions.
In order to have a fair comparison, these settings are kept the same for all algorithms over all benchmark functions during
the simulations.
Please cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
(2012), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

Fig. 6a. Initial population consisting of 100 points in the range [�600,600] for Griewanks function using DE.

Fig. 6b. Initial population consisting of 100 points in the range [�600,600] for Griewank function using ODE.

Fig. 6c. Initial population consisting of 100 points in the range [�600,600] for Griewank function using QIDE.

M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx 9
6. Numerical results and comparisons

6.1. Benchmark problems

The performance of proposed algorithms is evaluated on a test bed of twenty standard, benchmark problems with box
constraints, taken from the literature [26]. Mathematical models of the benchmark problems along with the true optimum
value are given in Appendix. Besides analyzing the performance of the proposed algorithms on traditional benchmark prob-
Please cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
(2012), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

Fig. 6d. Initial population consisting of 100 points in the range [�600,600] for Griewank function using NSDE.

10 M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx
lems, we also validated it on a selected set of recently proposed benchmark test suite for CEC 2008 special session and com-
petition on large scale global optimization [32]. We considered seven problems from this test suite and tested them for
dimension 500. It includes the two unimodal (F1 and F2) and five multimodal (F3–F7) functions among which four are
non-separable (F2, F3, F5, F7) and three separable (F1, F4, F6).

6.2. Performance measures

Average fitness function value and standard deviation (STD)
Please
(2012
Average NFE ¼
Pn

i¼1NFEðfiÞ
n

;

Improvement ð%Þ in terms of NFE ¼ Total NFEðbasic DE algorithmÞ � Total NFEðAlgorithm to be comparedÞ
Total NFEðbasic DE algorithmÞ � 100;

Acceleration rateðARÞ ¼ Total NFE for basic DE
Total NFE for algorithm to be compared

;

Average CPU time¼
Pn

i¼1TimeðfiÞ
n

;

Improvement ð%Þin terms of CPU Time ¼ Total time basic DE algorithmð Þ � Total timeðAlgorithm to be comparedÞ
Total NFE basic DE algorithmð Þ � 100:
Besides the above mentioned performance measures, we have used student t-test to analyze the algorithms
The results corresponding to these performance measures are given in Tables 1–4, 5a–5c and 6.

6.3. Performance comparison of proposed QIDE and NSDE with basic DE and ODE

We have compared the proposed algorithms with the basic DE and ODE. Here we would like to mention that we have
used ODE version given in [25] instead of [26] because in [26], the authors have used the additional features like opposition
based generation jumping etc. while in the present study we just focusing on the effect of initial population generation on
basic DE algorithm. From Table 1, which gives the average fitness function value, standard deviation, it can be observed that
for the 20 benchmark problems taken in the present study all the algorithms gave more or less similar results, with marginal
differences, which are comparable to true optimum. DE, ODE and NSDE performed better than other algorithms in 25% cases,
while QIDE gave a better performance in comparison to other algorithms in 20% cases in term of average fitness function
value. For the function f14 (Step function) all the algorithms gave same results. Further to ascertain the significance of the
difference of mean of objective function values, we apply t-test at a 0.05 level of significance. A ‘�’ sign indicates that there
is no significant difference in the means and a ‘+’ (‘-’) sign indicates that the mean objective function value obtained by DE
(ODE, QIDE, NSDE) is significantly larger than the mean objective function value obtained ODE, QIDE, NSDE (DE). This is
shown in the last columns of Table 1. The best and worst fitness function values obtained, in 30 runs, by all the algorithms
for benchmark problems are given in Table 2.

In Table 3 we have recorded the total time taken by the algorithms considered in the present study. Basic DE took 32.68 s
while ODE, QIDE and NSDE took 30.08, 26.78 and 27.89 s respectively to solve the 20 test problems. Thus we can say that the
overall percentage improvement while applying ODE is around 8% in comparison to basic DE and there is an improvement of
around 18% and 15% while applying QIDE and NSDE respectively, which is twice the improvement shown by ODE.
cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

Table 1
Mean fitness, standard deviation of functions in 30 runs and t-test results.

Function Dim. Mean fitness, (Standard deviation) t-Test results

DE ODE QIDE NSDE ODE QIDE NSDE

f1 30 0.0546854 (0.0131867) 0.0901626 (0.0077778) 0.0855299 (0.0133846) 0.0916686 (0.00721253) – – –
f2 30 0.0560517 (0.0116127) 0.0918435 (0.00565233) 0.0932952 (0.00867206) 0.0866163 (0.00666531) – – –
f3 30 0.0957513 (0.00293408) 0.0952397 (0.00499586) 0.0951664 (0.00336872) 0.0951172 (0.00405255) � � �
f4 10 0.0931511 (0.0145175) 0.0874112 (0.00699322) 0.0778262 (0.0137472) 0.0851945 (0.0121355) � + +
f5 30 0.0915561 (0.012111) 0.0885065 (0.00711877) 0.0915062 (0.00638926) 0.0916412 (0.00860403) � � �
f6 30 0.0942648 (0.00478545) 0.0933845 (0.00620528) 0.0930114 (0.00501949) 0.0926704 (0.00735851) � � �
f7 2 4.26112e�008 (2.5783e�008) 6.23824e�008 (2.75612e�008) 4.5905e�008 (3.3009e�08) 4.9999e�008 (2.95279e�08) – � �
f8 4 0.0620131 (0.0239495) 0.0528597 (0.0276657) 0.067081 (0.0229266) 0.0591064 (0.0123711) � � �
f9 30 0.088998 (0.00880246) 0.092875 (0.00487147) 0.0848135 (0.00898217) 0.0882776 (0.0103789) � + �
f10 10 �7.91444 (3.40729) �9.61563 (0.024986) �9.62706 (0.0198371) �9.62952 (0.0238362) + + +
f11 30 0.0842833 (0.00897659) 0.0890837 (0.00961583) 0.0861358 (0.0102781) 0.0901177 (0.00969009) � � +
f12 30 0.0940407 (0.00501821) 0.0931232 (0.00502023) 0.094328 (0.00476967) 0.0951981 (0.00373364) � � �
f13 30 0.0956696 (0.00352899) 0.0935369 (0.00397665) 0.091846 (0.00707918) 0.0955274 (0.00495933) + + �
f14 30 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) � � �
f15 30 0.0730003 (0.0169434) 0.0880257 (0.0115251) 0.0807431 (0.0142388) 0.0890936 (0.00986588) – – –
f16 2 0.0645903 (0.0231492) 0.0545825 (0.0263629) 0.0721181 (0.0186806) 0.0539806 (0.0226797) � � �
f17 30 0.0910662 (0.00428958) 0.0845474 (0.0118228) 0.0891959 (0.00724487) 0.0923214 (0.00514694) + � �
f18 2 4.75455e�008 (2.9688e�008) 3.63292e�008 (3.10335e�008) 5.13125e�008 (3.2954e�08) 2.657e�008 (2.657e�008) � � �
f19 5 0.067335 (0.025448) 0.0738969 (0.0209749) 0.0664662 (0.0166898) 0.0769911 (0.0160823) � � �
f20 5 �3.99239 (0.00164918) �3.99398 (0.00235545) �3.99297 (0.00183906) �3.99297 (0.00184151) + � �

M
.A

li
et

al./A
pplied

M
athem

atics
and

Com
putation

xxx
(2012)

xxx–
xxx

11

Please
cite

this
article

in
press

as:
M

.
A

li
et

al.,
U

nconventional
initialization

m
ethods

for
differen

tial
evolu

tion,
A

ppl.
M

ath.
Com

put.
(2012),http://dx.doi.org/10.1016/j.am

c.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

Table 2
Best and worst fitness function values obtained by all the algorithms

Function Dim. Best and Worst function values

DE ODE QIDE NSDE

f1 30 0.0533706
0.0920816

0.0710478
0.0980475

0.0579077
0.0989701

0.0801175
0.0989173

f2 30 0.0469366
0.0852506

0.0834493
0.0994759

0.0736855
0.0995696

0.0708503
0.0971761

f3 30 0.0912359
0.099449

0.0812952
0.0991723

0.086481
0.0987919

0.085954
0.0987729

f4 10 0.0555946
0.0973456

0.0782872
0.0990834

0.0553663
0.0982010

0.0586798
0.0986525

f5 30 0.0550155
0.0985525

0.0765341
0.0976009

0.0801072
0.0986306

0.0730851
0.0988916

f6 30 0.0811647
0.0995538

0.0799383
0.0992613

0.0846065
0.0990139

0.0777488
0.0979521

f7 2 3.03242e�009
8.24678e�008

1.9059e�008
9.47894e�008

7.22166e�009
9.18626e�008

5.64424e�009
8.50966e�008

f8 4 0.0139037
0.0974824

0.00826573
0.09121890

0.0132712
0.0873360

0.0333435
0.0790444

f9 30 0.0746445
0.0995713

0.0849655
0.098311

0.0682601
0.0951216

0.064171
0.0992847

f10 10 �9.64801
�1.02642

�9.65114
�9.59249

�9.64608
�9.59216

�9.65368
�9.57805

f11 30 0.0627431
0.0944119

0.0636232
0.0989899

0.0668308
0.0976185

0.0683468
0.0994605

f12 30 0.0849009
0.0991914

0.0819181
0.0999306

0.0807365
0.0989910

0.0887407
0.0997806

f13 30 0.0902771
0.0996024

0.0866648
0.0988438

0.0778513
0.0987097

0.0854635
0.0998667

f14 30 0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

f15 30 0.0441712
0.0945989

0.0593778
0.0991945

0.0492061
0.0984191

0.067818
0.0992816

f16 2 0.0277478
0.0969767

0.0129757
0.0984134

0.037426
0.0921157

0.0297125
0.0918671

f17 30 0.0844465
0.0975161

0.0593988
0.0997203

0.0747125
0.09992

0.0836182
0.0996487

f18 2 2.3063e�009
9.91416e�008

4.64862e�009
9.55725e�008

4.43574e�009
9.6909e�008

1.11418e�008
8.51751e�008

f19 5 0.00746793
0.099394

0.0291998
0.0995076

0.0320238
0.0900442

0.0483536
0.0999149

f20 5 �3.99626
�3.99019

�3.99737
�3.99035

�3.99602
�3.99058

�3.99644
�3.99027

12 M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx
However when we do the comparison in terms of average time taken and average number of function evaluations then
the proposed QIDE emerges as a clear winner. It converges to the optimum at a faster rate in comparison to all other algo-
rithms. Only for functions f3 (Rosenbrock), f13 (Schwefel) and f19 (Pathalogical) QIDE took more NFE than other algorithms,
whereas for the remaining 17 problems QIDE converged faster than the other algorithms. This fact is also evident from the
overall acceleration rate which shows that ODE reduces the NFE up to 8.56%, whereas the reduction in NFE while using QIDE
is up to 28.76% and for NSDE, the reduction is around 26.93%.

In Tables 5a and 5b we compare the performance of the proposed algorithms one by one in terms of improvement in NFE
and CPU time for all the functions. From Table 5a, which gives the comparison of QIDE, we see that in comparison to basic DE,
except for function f3 (Rosenbrock), there is an improvement of more than 8% for all the test problems in terms of NFE. In
case of f11 (Zharkhov), this improvement is more than 78%. Its comparison with ODE shows that except for f3 and f13, for
every function there is an improvement of more than 6% in terms of NFE. As expected a similar behavior of QIDE can be ob-
served in terms of average CPU time. In Table 5b, the performance of NSDE is compared with basic DE and ODE. Here also we
see that in comparison to basic DE, except for function f3, there is an improvement of more than 4% for all the test problems
in terms of NFE. When compared with ODE, NSDE shows an improvement of around 2% for all the test problems except for f3

and f13. This behavior is displayed when NSDE is compared with basic DE and ODE in terms of average CPU time also. In Table
5c, we compare both the algorithms against each other. Here we see that QIDE outperforms NSDE (though marginally in
some cases) for all the test problems except f19. Performance curves of selected benchmark problems are illustrated in Figs.
7a–7h.

After evaluating the performance of the algorithms for solving traditional benchmark problems, their performance is fur-
ther validated on a set of 7 nontraditional benchmark functions and the corresponding numerical results are reported in Ta-
Please cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
(2012), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

Table 3
Average CPU time (in s) taken by the algorithms.

Fun. Dim. Average time (s)

DE ODE QIDE NSDE

f1 30 0.6 0.54 0.42 0.51
f2 30 0.6 0.57 0.53 0.55
f3 30 11.3 11.1 11.2 11.4
f4 10 2.41 2.34 2.01 2.1
f5 30 1.8 1.79 1.5 1.7
f6 30 1.5 1.45 1.3 1.41
f7 2 0.31 0.29 0.1 0.21
f8 4 0.1 0.11 0.06 0.08
f9 30 1.2 1.11 1.1 1.11
f10 10 3.02 2.93 2.4 2.57
f11 30 2.91 2.37 1.5 1.61
f12 30 0.59 0.52 0.41 0.5
f13 30 1.83 1.24 1.3 1.41
f14 30 0.71 0.65 0.48 0.51
f15 30 0.47 0.45 0.39 0.41
f16 2 0.13 0.11 0.08 0.1
f17 30 0.92 0.81 0.71 0.75
f18 2 0.23 0.21 0.13 0.15
f19 5 1.66 1.12 0.87 0.51
f20 5 0.39 0.37 0.29 0.3

Total 32.68 30.08 26.78 27.89
Avg. 1.634 1.504 1.339 1.3945
%improv 7.955936 18.05386 14.65728

Table 4
Mean number of function evaluation of 30 runs and over all acceleration rates.

Fun. Dim. Mean function

DE ODE QIDE NSDE

f1 30 28020 26912 24210 26220
f2 30 37312 36639 33140 35500
f3 30 295232 295112 330840 332860
f4 10 382454 361234 264360 265420
f5 30 54503 53305 49590 52240
f6 30 52476 51589 48260 49170
f7 2 3845 3740 3020 3520
f8 4 7902 7934 6250 6780
f9 30 44034 41455 33830 35330
f10 10 220356 196871 165780 172200
f11 30 200924 196617 43990 44960
f12 30 66154 63760 42790 57800
f13 30 197069 148742 151150 155970
f14 30 42423 41578 27500 32300
f15 30 25903 24236 20700 22620
f16 2 3913 3832 3280 3600
f17 30 55029 52455 46690 47760
f18 2 7367 7249 5000 5150
f19 5 205398 150173 70860 57540
f20 5 32419 31305 27020 27260

Total 1962733 1794738 1398260 1434200
AR 8.559239% 28.75954% 26.92842%

M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx 13
ble 6 in terms of best, median, worst and mean error and standard deviation. From these results QIDE performed better than
DE for all the test cases with an improvement of up to 99% in the best function value for F1, F3 and F5 and an improvement
up to 75% for F2, F4 and F6. For the last function F7, the improvement is around 8%. After QIDE, it was ODE that gave a good
performance. Considering the complexity of the problems, NSDE also performed reasonably well though not as good as QIDE.

6.4. Analysis of control parameters F and Cr

The crucial parameters that influence the performance of DE algorithms are the scale factor (F) and the crossover rate (Cr).
In this subsection we will study the effect of these parameters on proposed algorithms taking function f6 with dimension 30.
Please cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
(2012), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

Table 5a
QIDE vs. basic DE and ODE: % improvement in terms of NFE and average CPU time.

Function Improvement in NFE Improvement in time

QIDEvsDE QIDEvsODE QIDEvsDE QIDEvsODE

f1 13.5974304 10.0401308 30 22.22222222
f2 11.1813894 9.549933131 11.6666667 7.01754386
f3 �12.0610232 �12.10659004 0.88495575 �0.900900901
f4 30.8779618 26.81751995 16.5975104 14.1025641
f5 9.01418271 6.969327455 16.6666667 16.20111732
f6 8.03414894 6.452926011 13.3333333 10.34482759
f7 21.4564369 19.2513369 67.7419355 65.51724138
f8 20.9060997 21.22510713 40 45.45454545
f9 23.1730027 18.39343867 8.33333333 0.900900901
f10 24.7671949 15.79257483 20.5298013 18.0887372
f11 78.1061496 77.62655315 48.4536082 36.70886076
f12 35.3175923 32.88895859 30.5084746 21.15384615
f13 23.3009758 �1.618910597 28.9617486 �4.838709677
f14 35.176673 33.85925249 32.3943662 26.15384615
f15 20.0864765 14.58986631 17.0212766 13.33333333
f16 16.1768464 14.40501044 38.4615385 27.27272727
f17 15.153828 10.9903727 22.826087 12.34567901
f18 32.1297679 31.02496896 43.4782609 38.0952381
f19 65.5011246 52.8144207 53.6144578 31.25
f20 16.6538141 13.68790928 25.6410256 21.62162162

Table 5b
NSDE vs. basic DE and ODE: % improvement in terms of NFE and average CPU time.

Function Improvement in NFE Improvement in time

NSDEvsDE NSDEvsODE NSDEvsDE NSDEvsODE

f1 6.42398287 2.57134364 15 5.55555556
f2 4.85634648 3.1087093 8.3333333 3.50877193
f3 �12.7452309 �12.7910759 �0.884956 �2.7027027
f4 30.6008043 26.5240813 12.863071 10.2564103
f5 4.15206502 1.9979364 5.5555556 5.02793296
f6 6.30002287 4.68898409 6 2.75862069
f7 8.45253576 5.88235294 32.258065 27.5862069
f8 14.198937 14.5449962 20 27.2727273
f9 19.766544 14.7750573 7.5 0
f10 21.8537276 12.5315562 14.900662 12.2866894
f11 77.62338 77.1332082 44.67354 32.0675105
f12 12.6281102 9.34755332 15.254237 3.84615385
f13 20.855132 �4.85942101 22.95082 �13.7096774
f14 23.862056 22.3146857 28.169014 21.5384615
f15 12.6742076 6.66776696 12.765957 8.88888889
f16 7.99897777 6.05427975 23.076923 9.09090909
f17 13.2093987 8.95052902 18.478261 7.40740741
f18 30.0936609 28.955718 34.782609 28.5714286
f19 71.9860953 61.6841909 69.277108 54.4642857
f20 15.9135075 12.9212586 23.076923 18.9189189

14 M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx
To check the effect of the scaling factor F, it is varied from 0.1 to 0.9 in steps of 0.2 at crossover rate Cr = 0.9 that is shown in
Fig. 8. It manages the two operations, exploration and exploitation. Larger the F the exploration is high but the convergence is
slow down while F is small exploitation is high but there is a chance to stuck in a local optimum.

To investigate the sensitivity of the proposed algorithms to variations of crossover rate Cr, we experimented with differ-
ent values of Cr ranging from 0.1 to 0.9 with steps of 0.2 at scaling factor F = 0.5. Results, plotted in Fig. 9, show how the
performance of algorithms changes with the different values of Cr. Larger the value of Cr faster the convergence while the
value of Cr is small the convergence is slow. So, the values of control parameters of the algorithms should be carefully chosen.

7. Discussion and conclusions

In the present paper we have proposed two schemes based on Quadratic Interpolation (QI) and nonlinear simplex method
(NSM) to generate the initial population of DE. These schemes provide the information of the potential regions of the search
space and their conjugation with random numbers prevents them from becoming a totally greedy search in nature. Conse-
Please cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
(2012), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

Table 5c
QIDE vs. NSDE: %improvement in terms of NFE and average CPU time.

Function Improvement in NFE Improvement in time

f1 7.665904 17.6470588
f2 6.647887 3.63636364
f3 0.606862 1.75438596
f4 0.399367 4.28571429
f5 5.072741 11.7647059
f6 1.850722 7.80141844
f7 14.20455 52.3809524
f8 7.817109 25
f9 4.245684 0.9009009
f10 3.728223 6.61478599
f11 2.157473 6.83229814
f12 25.96886 18
f13 3.090338 7.80141844
f14 14.86068 5.88235294
f15 8.488064 4.87804878
f16 8.888889 20
f17 2.240369 5.33333333
f18 2.912621 13.3333333
f19 �23.1491 �50.9803922
f20 0.880411 3.33333333

Table 6
Comparison of proposed algorithms with DE and ODE for nontraditional shifted functions in terms of error (best median, worst and mean) and standard
deviation (std.).

Problem Dim Error value DE ODE [33] NSDE QIDE

F1 500 Best 2, 636.54 15.66 4.98 3.48
Median 3, 181.45 36.61 5.89 5.32
Worst 4, 328.80 292.65 8.28 7.57
Mean 3, 266.24 80.17 5.03 4.86
Std. 409.68 79.24 5.78 4.34

F2 500 Best 79.74 3.60 2.78 19.82
Median 82.39 4.86 4.93 11.88
Worst 85.92 11.91 7.32 12.26
Mean 82.93 5.78 3.92 11.87
Std. 2.09 2.37 2.49 1.93

F3 500 Best 76, 615, 772.08 39, 718.90 763,323.45 727,996.00
Median 119, 733, 49.20 137, 279.03 782,301.74 731, 546.21
Worst 169, 316,779.50 407, 661.64 789,873.56 732, 763.93
Mean 123, 184, 755.70 154, 306.34 779,289.90 730, 473.25
Std. 29, 956, 737.58 114, 000.53 117,328.93 116,325.43

F4 500 Best 5, 209.99 2, 543.51 1,183.84 1, 155.15
Median 5, 324.57 4, 279.56 4,382.63 3, 243.87
Worst 5, 388.24 6, 003.94 4,829.43 4, 478.90
Mean 5, 332.59 4, 216.34 4,132.54 4, 212.76
Std. 43.82 1, 017.94 67.32 58.60

F5 500 Best 24.29 1.25 1.09 0.31
Median 24.71 1.55 1.32 0.87
Worst 27.59 2.13 1.58 0.96
Mean 25.16 1.75 1.38 0.56
Std. 1.10 0.37 0.18 0.05

F6 500 Best 4.66 2.49 2.37 1.18
Median 4.97 4.12 3.83 1.47
Worst 5.15 6.73 5.18 1.56
Mean 4.94 4.51 4.27 1.25
Std. 0.17 1.44 1.06 0.07

F7 500 Best �3683.07 �3957.85 �3983.32 �3992.76
Median �3575.13 �3834.07 �3889.49 �3836.65
Worst �3565.73 �3830.36 �3738.54 �3833.21
Mean �3593.75 �3851.82 �3883.85 �3863.59
Std. 32.74 38.80 34.54 29.31

M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx 15

Please cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
(2012), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

FI
tn

es
s

NO of function evaluation

DE
ODE
QIDE
NSDE

Fig. 7a. Sphere (f1) function.

Fi
tn

es
s

NO of function evaluation

DE
ODE
QIDE
NSDE

Fig. 7b. Colville (f8) function.

Fi
tn

es
s

NO of function evaluation

DE
ODE
QIDE
NSDE

Fig. 7c. Axis parallel (f2) function.

NO of function evaluation

NSDE

Fig. 7d. Griewenk (f5) function.

16 M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx
quently the initial population, though being biased towards the solution preserves diversity also. The only structural differ-
ence between the proposed DE algorithms (QIDE and NSDE) and the basic DE lies is the initialization phase only.

From the empirical studies and graphic illustrations we can say that the proposed schemes enhance the working of basic
DE in terms of average CPU time and NFEs without compromising with the quality of solution. We see that the improvement
in average CPU time while using QIDE and NSDE is 18% and 14% respectively in comparison to basic DE. This is twice the
improvement obtained by using ODE (7%). This evidently shows that the proposed schemes significantly improve the per-
Please cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
(2012), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

Fi
tn

es
s

NO of function evaluation

DE
ODE
QIDE
NSDE

Fig. 7e. Restrigin (f4) function.

Fi
tn

es
s

DE
ODE
QIDE
NSDE

Fig. 7f. Inverted (f20) cosine.

Fi
tn

es
s

NO of function evaluation

DE
ODE
QIDE
NSDE

Fig. 7g. Tripod (f16) function.

Fi
tn

es
s

NO of function evaluation

DE

ODE

QIDE

NSDE

Fig. 7h. Step (f14) function.

M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx 17
formance of basic DE. Such a situation is very useful in real world scenarios where sometimes the optimum has to be located
in smallest possible time.

The only functions where QIDE and NSDE did not perform as expected were Rosenbrock (f3) and f13 (Schwefel) and require
further investigation.

Also we would like to mention that other than the process of initial population construction, we have not made use of any
other additional feature/parameter in the basic structure of DE. Though we have applied the proposed schemes in basic DE,
Please cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
(2012), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

(a) QIDE (b) NSDE

Fi
tn

es
s

NO of function evaluation

F=0.1
F=0.3
F=0.5
F=0.7
F=0.9 Fi

tn
es

s

No of function evaluation

F=0.1
F=0.3
F=0.5
F=0.7
F=0.9

Fig. 8. Convergence graphs of proposed algorithms with different values of F and Cr = 0.9.

(a) QIDE (b) NSDE

Fi
tn

es
s

NO of function evaluation

Cr=0.1
Cr=0.3
Cr=0.5
Cr=0.7
Cr=0.9

Fi
tn

es
s

No of function evaluation

Cr=0.1
Cr=0.3
Cr=0.5
Cr=0.7
Cr=0.9

Fig. 9. Convergence graphs of proposed algorithms with different values of Cr and F = 0.5.

18 M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx
they can be applied in any evolutionary algorithm which makes use of randomly generated initial points. As a concluding
statement it can be said that providing the initial population with some extra information of search space is an important
help for the DE algorithm, since it may lead to faster convergence and improve the quality of the solutions provided by the
algorithm.
Acknowledgments

The authors thank the anonymous reviewers and the Editor for their valuable comments and suggestions to improve the
quality of the paper.
Appendix A

1. Sphere function:
Please
(2012
f1ðxÞ ¼
Xn

i¼1

x2
i ; with � 5:12 6 xi 6 5:12; min f 1ð0; . . . ;0Þ ¼ 0:
2. Axis parallel hyper-ellipsoid:
f2ðxÞ ¼
Xn

i¼1

ix2
i ; with � 5:12 6 xi 6 5:12; min f 2ð0; . . . ;0Þ ¼ 0:
3. Rosenbrock’s valley:
f3ðxÞ ¼
Xn�1

i¼1

100 x2
iþ1 � x2

i

� �
þ 1� x2

i

� �� �
with � 2 6 xi 6 2; min f 3ð1; . . . ;1Þ ¼ 0:
4. Rastrigin’s function:
f4ðxÞ ¼ 10nþ
Xn

i¼1

x2
i � 10 cosð2pxiÞ

� �
with � 5:12 6 xi 6 5:12; min f 4ð0; . . . ;0Þ ¼ 0:
cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx 19
5. Griewank function:
Please
(2012
f5ðxÞ ¼
1

4000

Xn

i¼1

x2
i �

Yn

i¼1

cos
xiffiffi

i
p
� 	

þ 1 with � 600 6 xi 6 600; min f 5ð0; . . . ;0Þ ¼ 0:
6. Ackley’s function:
f6ðXÞ ¼ �20 � exp �:2

ffi
1=n

Xn

i¼1

x2
i

vuut
0
@

1
A� exp 1=n

Xn

i¼1

cosð2pxiÞ
 !

þ 20þ e; with � 32 6 xi 6 32;

min f 6ð0; . . . ;0Þ ¼ 0:
7. Beale function:
f7ðxÞ ¼ ½1:5� x1ð1� x2Þ�2 þ 2:25� x1 1� x2
2

� �� �2 þ 2:625� x1 1� x3
2

� �� �2
with � 4:5 6 xi 6 4:5; min f 7ð3;0:5Þ ¼ 0:
8. Colville function:
f8ðxÞ ¼ 100 x2 � x2
1

� �2 þ ð1� x1Þ2 þ 90 x4 � x2
3

� �2 þ ð1� x3Þ2 þ 10:1ððx2 � 1Þ2 þ ðx4 � 1Þ2Þ19:8ðx2 � 1Þðx4 � 1Þ with;
� 10 6 xi 6 10; min f 8ð1;1;1;1Þ ¼ 0:
9. Levy function:
f9ðxÞ ¼ sin2ð3px1Þ þ
Xn�1

i¼1

ðxi � 1Þð1þ sin2ð3pxiþ1ÞÞ þ ðxn � 1Þð1þ sin2ð2pxnÞÞ with � 10 6 xi 6 10;

min f 9ð1; . . . ;1Þ ¼ 0
10. Michalewicz function:
f10ðxÞ ¼ �
Xn

i¼1

sinðxiÞ sinðix2
i =pÞ

 �2m
with 0 6 xi 6 p;m ¼ 10; min f 10ðn¼10Þ ¼ �9:66015:
11. Zakharov function:
f11ðxÞ ¼
Xn

i¼1

x2
i þ

Xn

i¼1

0:5ixi

 !2

þ
Xn

i¼1

0:5ixi

 !4

with � 5 6 xi 6 10; min f 11ð0; . . . ;0Þ ¼ 0:
12. Schawefel’s problem 2.22:
f12ðxÞ ¼
Xn

i¼1

jxij þ
Yn

i¼1

jxij with � 10 6 xi 6 10; min f 12ð0; . . . ;0Þ ¼ 0:
13. Schwefel’s problem 2.21:
f13ðxÞ ¼max
i
fjxij;1 6 i 6 ng with � 100 6 xi 6 100; min f 13ð0; . . . ;0Þ ¼ 0:
14. Step function:
f14ðxÞ ¼
Xn

i¼1

ðbxi þ 0:5cÞ2 with � 100 6 xi 6 100; min f 14ð�0:5 6 xi 6 0:5Þ ¼ 0:
15. Quartic function:
f15ðxÞ ¼
Xn

i¼1

ix4
i þ random½0;1Þ with � 1:28 6 xi 6 1:28; min f 15ð0; . . . ;0Þ ¼ 0:
16. Tripod function:
f16ðxÞ ¼ pðx2Þð1þ pðx1ÞÞ þ jðx1 þ 50pðx2Þð1� 2pðx1ÞÞÞj þ jðx2 þ 50ð1� 2pðx2ÞÞÞj with
� 100 6 xi 6 100; min f 16ð0;�50Þ ¼ 0 where pðxÞ ¼ 1 for x > 0 otherwise pðxÞ ¼ 0:
17. Alpine function:
f17ðxÞ ¼
Xn

i¼1

jxi sinðxiÞ þ 0:1xij with � 10 6 xi 6 10; min f 17ð0; . . . ;0Þ ¼ 0:
cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://dx.doi.org/10.1016/j.amc.2012.10.053

20 M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx
18. Cshaffer’s function 6:
Please
(2012
f18ðxÞ ¼ 0:5þ
sin2

ffi
x2

1 þ x2
2

� �q
� 0:5

1þ 0:01 x2
1 þ x2

2

� �2 with � 10 6 xi 6 10; min f 18ð0;0Þ ¼ 0:
19. Pathological function:
f19ðxÞ ¼
Xn�1

i¼1

0:5þ
sin2

ffi
100x2

i þ x2
iþ1

� �q
� 0:5

1þ 0:001 x2
i þ x2

iþ1 � 2xixiþ1
� �2

0
@

1
A with � 100 6 xi 6 100; min f 19ð0; . . . ;0Þ ¼ 0:
20. Inverted cosine wave function:
f20ðxÞ ¼ �
Xn�1

i¼1

exp
�ðx2

i þ x2
iþ1 þ 0:5xixiþ1Þ

8

� 	
cos 4

ffi
x2

i þ x2
iþ1 þ 0:5xixiþ1

q
 �� 	
with � 5 6 xi 6 5;

min f 20ð0; . . . ;0Þ ¼ �nþ 1:
References

[1] R. Storn, K. Price, DE-a simple and efficient heuristic for global optimization over continuous space, Journal of Global Optimization 11 (4) (1997) 341–
359.

[2] K. Price, An introduction to DE, in: D. Corne, D. Marco, F. Glover (Eds.), New Ideas in Optimization, McGraw-Hill, London (UK), 1999, pp. 78–108.
[3] R. Angira, B.V. Babu, Optimization of process synthesis and design problems: a modified differential evolution approach, Chemical Engineering Science

61 (2006) 4707–4721.
[4] E. Cuevas, D. Zaldivar, M.P. Cisneros, A novel multi-threshold segmentation approach based on differential evolution optimization, Expert Systems with

Applications 37 (2010) 5265–5271.
[5] W. Kwedlo, A clustering method combining differential evolution with the K-means algorithm, Pattern Recognition Letters 32 (2011) 1613–1621.
[6] K. Hammouche, M. Diaf, P. Siarry, A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem,

Engineering Applications of Artificial Intelligence 23 (2010) 676–688.
[7] M.F. Tasgetiren, P.N. Suganthan, Q.-K. Pan, An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman

problem, Applied Mathematics and Computation 215 (2010) 3356–3368.
[8] X. Zhang, J. Zhou, C. Wang, C. Li, L. Song, Multi-class support vector machine optimized by inter-cluster distance and self-adaptive deferential

evolution, Applied Mathematics and Computation 218 (2012) 4973–4987.
[9] R. Thangaraj, M. Pant, A. Abraham, New mutation schemes for differential evolution algorithm and their application to the optimization of directional

over-current relay settings, Applied Mathematics and Computation 216 (2010) 532–544.
[10] M. Ali, P. Siarry, M. Pant, An efficient differential evolution based algorithm for solving multi-objective optimization problems, European Journal of

Operational Research 217 (2012) 404–416.
[11] P.K. Bergey, C. Rgsdale, Modified differential evolution: a greedy random strategy for genetic recombination, Omega 33 (2005) 255–265.
[12] P. Kaleo, M.M. Ali, A numerical study of some modified differential evolution algorithms, European Journal of Operational Research 169 (2006) 1176–

1184.
[13] M.M. Ali, Differential evolution with preferential crossover, European Journal of Operational Research 181 (2007) 1137–1147.
[14] N. Noman, H. Iba, Enhancing differential evolution performance with local search for high dimensional function optimization, in: GECCO’05,

Washington, DC, USA, 2005, pp. 967–974.
[15] A.K. Qin, P.N. Suganthan, Self Adaptive Differential Evolution Algorithm for Numerical Optimization, IEEE, 2005. pp. 1785–1791.
[16] H.Y Fan, J. Lampinen, G.S. Dulikravich, Improvements to mutation donor formulation of differential evolution, in: International Congress on

Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, EUROGEN, 2003, pp. 1–12.
[17] Musrrat Ali, Millie Pant, Improving the performance of differential evolution algorithm using Cauchy mutation, Soft Computing 15 (2011) 991–1007.
[18] L. Wang, F.-Z. Huang, Parameter analysis based on stochastic model for differential evolution algorithm, Applied Mathematics and Computation 217

(2010) 3263–3273.
[19] R. Thangaraj, M. Pant, A. Abraham, P. Bouvry, Particle swarm optimization: hybridization perspectives and experimental illustrations, Applied

Mathematics and Computation 217 (2011) 5208–5226.
[20] V.C. Mariani, L.G.J. Luvizotto, F.A. Guerra, L.S. Coelho, A hybrid shuffled complex evolution approach based on differential evolution for unconstrained

optimization, Applied Mathematics and Computation 217 (2011) 5822–5829.
[21] S. Kimura, K. Matsumura, Genetic Algorithms using low discrepancy sequences, in: Proc of GEECO, 2005, pp. 1341–1346.
[22] X.H. Nguyen, Q.Uy. Nguyen, R.I. Mckay, P.M. Tuan, Initializing PSO with randomized low-discrepancy sequences: the comparative results, in: Proc. of

IEEE Congress on Evolutionary Algorithms, 2007, pp. 1985–1992.
[23] K.E. Parsopoulos, M.N. Vrahatis, Initializing the particle swarm optimization using nonlinear simplex method, in: Advances in Intelligent Systems,

Fuzzy Systems, Evolutionary Computation, WSEAS press, 2002, pp. 216–221.
[24] Millie Pant, Radha Thangaraj, Crina Grosan, Ajith Abraham, Improved particle swarm optimization with low-discrepancy sequences, in: Proc. of IEEE

Congress on Evolutionary Algorithms, 2008, pp. 3011–3018.
[25] Shahryar Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, A novel population initialization method for accelerating evolutionary algorithms, Computer

and Applied Mathematics with Application 53 (2007) 1605–1614.
[26] S. Rahnamayan, H.R. Tizhoosh, M.A. Salman, Opposition based-differential evolution, IEEE Transaction on Evolutionary Computation 12 (1) (2008) 64–

79.
[27] Shahryar Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition versus randomness in soft computing techniques, Applied Soft Computing 8 (2)

(2008) 906–918.
[28] Li Zhang, Yong-Chang Jiao, Hong Li, Fu-Shun Zhang, Hybrid differential evolution and the simplified quadratic interpolation for global optimization, in:

GEC’09, ACM, Shanghai, China, 2009. 978-1-60558-326-6/09/06.
[29] M.M. Ali, A. Torn, Population set based global optimization algorithms: some modifications and numerical studies, 2003, Available from:

<www.ima.umn.edu/preprints/>.
[30] C. Mohan, K. Shanker, A controlled random search technique for global optimization using quadratic approximation, Asia-Pacific Journal of Operational

Research 11 (1994) 93–101.
cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://www.ima.umn.edu/preprints/
http://dx.doi.org/10.1016/j.amc.2012.10.053

M. Ali et al. / Applied Mathematics and Computation xxx (2012) xxx–xxx 21
[31] J.A. Nelder, R. Mead, A simplex method for function minimization, Computer Journal 7 (1965) 308–313.
[32] K. Tang, X. Yao, P.N. Suganthan, C. MacNish, Y.P. Chen, C.M. Chen, Z. Yang, Benchmark functions for the CEC 2008 special session and competition on

large scale global optimization, Technical Report, Nature Inspired Computation and Applications Laboratory, USTC, China, 2007, Online available at:
<http://nical.ustc.edu.cn/cec08ss.php>.

[33] S. Rahnamayan, G.G. Wang, Solving large scale optimization problems by opposition based differential evolution (ODE), WSEAS Transaction on
Computers 7 (2008) 1792–1804.
Please cite this article in press as: M. Ali et al., Unconventional initialization methods for differential evolution, Appl. Math. Comput.
(2012), http://dx.doi.org/10.1016/j.amc.2012.10.053

http://nical.ustc.edu.cn/cec08ss.php
http://dx.doi.org/10.1016/j.amc.2012.10.053

	Unconventional initialization methods for differential evolution
	1 Introduction
	2 Differential evolution (DE)
	2.1 Mutation
	2.2 Crossover
	2.3 Selection

	3 Initial population generation methods used in the present study
	3.1 Opposition Based Method (OBM)
	3.2 Quadratic interpolation (QI)
	3.3 Nonlinear simplex method (NSM)

	4 Proposed algorithms
	4.1 Effects of using the proposed methods to generate initial population:

	5 Experimental setup
	6 Numerical results and comparisons
	6.1 Benchmark problems
	6.2 Performance measures
	6.3 Performance comparison of proposed QIDE and NSDE with basic DE and ODE
	6.4 Analysis of control parameters F and Cr

	7 Discussion and conclusions
	Acknowledgments
	Appendix A
	References

