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Engineers and researchers in the automobile industry have tried to design and build safer automobiles, 
but traffic accidents are unavoidable. Patterns involved in dangerous crashes could be detected if we 
develop accurate prediction models capable of automatic classification of type of injury severity of 
various traffic accidents. These behavioral and roadway accident patterns can be useful to develop 
traffic safety control policies. We believe that to obtain the greatest possible accident reduction effects 
with limited budgetary resources, it is important that measures be based on scientific and objective 
surveys of the causes of accidents and severity of injuries. This paper summarizes the performance of 
four machine learning paradigms applied to modeling the severity of injury that occurred during traffic 
accidents. We considered neural networks trained using hybrid learning approaches, support vector 
machines, decision trees and a concurrent hybrid model involving decision trees and neural networks. 
Experiment results reveal that among the machine learning paradigms considered the hybrid decision 
tree-neural network approach outperformed the individual approaches. 
Povzetek: Štirje pristopi strojnega učenja so uporabljeni za preiskovanje zakonitosti poškodb v 
prometnih nesrečah. 

1 Introduction 

The costs of fatalities and injuries due to traffic 
accidents have a great impact on the society. In recent 
years, researchers have paid increasing attention to 
determining factors that significantly affect severity of 
driver injuries caused by traffic accidents [29][30]. There 
are several approaches that researchers have employed to 
study this problem. These include neural network, 
nesting logic formulation, log-linear model, fuzzy ART 
maps and so on.  

Applying data mining techniques to model 
traffic accident data records can help to understand the 
characteristics of drivers’ behaviour, roadway condition 
and weather condition that were causally connected with 
different injury severity. This can help decision makers 
to formulate better traffic safety control policies. Roh et 
al. [22] illustrated how statistical methods based on 
directed graphs, constructed over data for the recent 
period, may be useful in modelling traffic fatalities by 
comparing models specified using directed graphs to a 
model, based on out-of-sample forecasts, originally 
developed by Peltzman [23]. The directed graphs model 
outperformed Peltzman’s model in root mean squared 
forecast error.  

Ossenbruggen et al. [24] used a logistic 
regression model to identify statistically significant 
factors that predict the probabilities of crashes and injury 
crashes aiming at using these models to perform a risk 
assessment of a given region. These models were 
functions of factors that describe a site by its land use 
activity, roadside design, use of traffic control devices 

and traffic exposure. Their study illustrated that village 
sites are less hazardous than residential and shopping 
sites. Abdalla et al. [25] studied the relationship between 
casualty frequencies and the distance of the accidents 
from the zones of residence. As might have been 
anticipated, the casualty frequencies were higher nearer 
to the zones of residence, possibly due to higher 
exposure. The study revealed that the casualty rates 
amongst residents from areas classified as relatively 
deprived were significantly higher than those from 
relatively affluent areas.  

Miaou et al. [26] studied the statistical 
properties of four regression models: two conventional 
linear regression models and two Poisson regression 
models in terms of their ability to model vehicle 
accidents and highway geometric design relationships. 
Roadway and truck accident data from the Highway 
Safety Information System (HSIS) have been employed 
to illustrate the use and the limitations of these models. It 
was demonstrated that the conventional linear regression 
models lack the distributional property to describe 
adequately random, discrete, nonnegative, and typically 
sporadic vehicle accident events on the road. The Poisson 
regression models, on the other hand, possess most of the 
desirable statistical properties in developing the 
relationships.  

Abdelwahab et al. studied the 1997 accident 
data for the Central Florida area [2]. The analysis 
focused on vehicle accidents that occurred at signalized 
intersections. The injury severity was divided into three 
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classes: no injury, possible injury and disabling injury. 
They compared the performance of Multi-layered 
Perceptron (MLP) and Fuzzy ARTMAP, and found that 
the MLP classification accuracy is higher than the Fuzzy 
ARTMAP. Levenberg-Marquardt algorithm was used for 
the MLP training and achieved 65.6 and 60.4 percent 
classification accuracy for the training and testing 
phases, respectively. The Fuzzy ARTMAP achieved a 
classification accuracy of 56.1 percent.  

Yang et al. used neural network approach to 
detect safer driving patterns that have less chances of 
causing death and injury when a car crash occurs [17]. 
They performed the Cramer’s V Coefficient test [18] to 
identify significant variables that cause injury to reduce 
the dimensions of the data. Then, they applied data 
transformation method with a frequency-based scheme to 
transform categorical codes into numerical values. They 
used the Critical Analysis Reporting Environment 
(CARE) system, which was developed at the University 
of Alabama, using a Backpropagation (BP) neural 
network. They used the 1997 Alabama interstate alcohol-
related data, and further studied the weights on the 
trained network to obtain a set of controllable cause 
variables that are likely causing the injury during a crash. 
The target variable in their study had two classes: injury 
and non-injury, in which injury class included fatalities. 
They found that by controlling a single variable (such as 
the driving speed, or the light conditions) they potentially 
could reduce fatalities and injuries by up to 40%.  

Sohn et al. applied data fusion, ensemble and 
clustering to improve the accuracy of individual 
classifiers for two categories of severity (bodily injury 
and property damage) of road traffic accidents [15]. The 
individual classifiers used were neural network and 
decision tree. They applied a clustering algorithm to the 
dataset to divide it into subsets, and then used each 
subset of data to train the classifiers. They found that 
classification based on clustering works better if the 
variation in observations is relatively large as in Korean 
road traffic accident data.  

Mussone et al. used neural networks to analyze 
vehicle accident that occurred at intersections in Milan, 
Italy [12]. They chose feed-forward MLP using BP 
learning. The model had 10 input nodes for eight 
variables (day or night, traffic flows circulating in the 
intersection, number of virtual conflict points, number of 
real conflict points, type of intersection, accident type, 
road surface condition, and weather conditions). The 
output node was called an accident index and was 
calculated as the ratio between the number of accidents 
for a given intersection and the number of accidents at 
the most dangerous intersection. Results showed that the 
highest accident index for running over of pedestrian 
occurs at non-signalized intersections at nighttime.  

Dia et al. used real-world data for developing a 
multi-layered MLP neural network freeway incident 
detection model [5]. They compared the performance of 
the neural network model and the incident detection 
model in operation on Melbourne’s freeways. Results 
showed that neural network model could provide faster 
and more reliable incident detection over the model that 

was in operation. They also found that failure to provide 
speed data at a station could significantly deteriorate 
model performance within that section of the freeway.  

Shankar et al. applied a nested logic formulation 
for estimating accident severity likelihood conditioned 
on the occurrence of an accident [14]. They found that 
there is a greater probability of evident injury or 
disabling injury/fatality relative to no evident injury if at 
least one driver did not use a restraint system at the time 
of the accident.  

Kim et al. developed a log-linear model to 
clarify the role of driver characteristics and behaviors in 
the causal sequence leading to more severe injuries. They 
found that alcohol or drug use and lack of seat belt use 
greatly increase the odds of more severe crashes and 
injuries [8].  

Abdel-Aty et al. used the Fatality Analysis 
Reporting System (FARS) crash databases covering the 
period of 1975-2000 to analyze the effect of the 
increasing number of Light Truck Vehicle (LTV) 
registrations on fatal angle collision trends in the US [1]. 
They investigated the number of annual fatalities that 
resulted from angle collisions as well as collision 
configuration (car-car, car-LTV, LTV-car, and LTV-
LTV). Time series modeling results showed that fatalities 
in angle collisions will increase in the next 10 years, and 
that they are affected by the expected overall increase of 
the percentage of LTVs in traffic.  

Bedard et al. applied a multivariate logistic 
regression to determine the independent contribution of 
driver, crash, and vehicle characteristics to drivers’ 
fatality risk [3]. They found that increasing seatbelt use, 
reducing speed, and reducing the number and severity of 
driver-side impacts might prevent fatalities. Evanco 
conducted a multivariate population-based statistical 
analysis to determine the relationship between fatalities 
and accident notification times [6]. The analysis 
demonstrated that accident notification time is an 
important determinant of the number of fatalities for 
accidents on rural roadways.  

Ossiander et al. used Poisson regression to 
analyze the association between the fatal crash rate (fatal 
crashes per vehicle mile traveled) and the speed limit 
increase [13]. They found that the speed limit increase 
was associated with a higher fatal crash rate and more 
deaths on freeways in Washington State. 

Finally, researchers studied the relationship 
between drivers’ age, gender, vehicle mass, impact speed 
or driving speed measure with fatalities and the results of 
their work can be found in [4, 9, 10, 11, 16].  

This paper investigates application of neural 
networks, decision trees and a hybrid combination of 
decision tree and neural network to build models that 
could predict injury severity. The remaining parts of the 
paper are organized as follows. In Section 2, more details 
about the problem and the pre-processing of data to be 
used are presented, followed, in Section 3, by a short 
description the different machine learning paradigms 
used. Performance analysis is presented in Section 4 and 
finally some discussions and conclusions are given 
towards the end. 
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2 Accident Data Set 
A. Description of the Dataset 

This study used data from the National Automotive 
Sampling System (NASS) General Estimates System 
(GES) [21]. The GES datasets are intended to be a 
nationally representative probability samples from the 
annual estimated 6.4 million accident reports in the 
United States. The initial dataset for the study contained 
traffic accident records from 1995 to 2000, a total 
number of 417,670 cases. According to the variable 
definitions for the GES dataset, this dataset has drivers’ 
records only and does not include passengers’ 
information. The total set includes labels of year, month, 
region, primary sampling unit, the number describing the 
police jurisdiction, case number, person number, vehicle 
number, vehicle make and model; inputs of drivers’ age, 
gender, alcohol usage, restraint system, eject, vehicle 
body type, vehicle age, vehicle role, initial point of 
impact, manner of collision, rollover, roadway surface 
condition, light condition, travel speed, speed limit and 
the output injury severity. The injury severity has five 
classes: no injury, possible injury, non-incapacitating 
injury, incapacitating injury, and fatal injury. In the 
original dataset, 70.18% of the cases have output of no 
injury, 16.07% of the cases have output of possible 
injury, 9.48% of the cases have output of non-
incapacitating injury, 4.02% of the cases have output of 
incapacitating injury, and 0.25% of the cases have fatal 
injury.  

Our task was to develop machine learning based 
intelligent models that could accurately classify the 
severity of injuries (5 categories). This can in turn lead to 
greater understanding of the relationship between the 
factors of driver, vehicle, roadway, and environment and 
driver injury severity. Accurate results of such data 
analysis could provide crucial information for the road 
accident prevention policy. The records in the dataset are 
input/output pairs with each record have an associated 
output. The output variable, the injury severity, is 
categorical and (as described above) has five classes. A 
supervised learning algorithm will try to map an input 
vector to the desired output class. 

B. Data Preparation 

When the input and output variables are considered there 
are no conflicts between the attributes since each variable 
represents its own characteristics. Variables are already 
categorized and represented by numbers. The manner in 
which the collision occurred has 7 categories: non-
collision, rear-end, head-on, rear-to-rear, angle, 
sideswipe same direction, and sideswipe opposite 
direction. For these 7 categories the distribution of the 
fatal injury is as follows: 0.56% for non collision, 0.08% 
for rear-end collision, 1.54% for head-on collision, 
0.00% for rear-to-rear collision, 0.20% for angle 
collision, 0.08% for sideswipe same direction collision, 
0.49% for sideswipe opposite direction collision. Since 
head-on collision has the highest percent of fatal injury; 
therefore, the dataset was narrowed down to head-on 

collision only. Head-on collision has a total of 10,386 
records, where 160 records show the result as a fatal 
injury; all of these 160 records have the initial point of 
impact categorized as front. 

The initial point of impact has 9 categories: no 
damage/non-collision, front, right side, left side, back, 
front right corner, front left corner, back right corner, 
back left corner. The head-on collision with front impact 
has 10,251 records; this is 98.70% of the 10,386 head-on 
collision records. We have therefore decided to focus on 
front impact only and removed the remaining 135 
records. Travel speed and speed limit were not used in 
the model because in the dataset there are too many 
records with unknown value. Specifically, for 67.68% of 
records the travel speed during accident and local speed 
limit were unknown. This means that the remaining input 
variables were: drivers’ age, gender, alcohol usage, 
restraint system, eject, vehicle body type, vehicle role, 
vehicle age, rollover, road surface condition, light 
condition. Table 1 summarizes the driver injury severity 
distribution for head-on collision and front impact point 
dataset. From Table 1, it is immediately evident that the 
alcohol usage and not using seat belt, ejection of driver, 
driver’s age (>65), vehicle rollover, and lighting 
condition can be associated with higher percentages of 
fatal injury, incapacitating injury and non-incapacitating 
injury. 

There are only single vehicles with ages 37, 41, 
46 and 56 years reported in the dataset and therefore 
these four records were deleted from the dataset (since 
they were clear outliers). After the preprocessing was 
completed, the final dataset used for modeling had 
10,247 records. There were 5,171 (50.46%) records with 
no injury, 2138 (20.86%) records with possible injury, 
1721 (16.80%) records with non-incapacitating injury, 
1057 (10.32%) records with incapacitating injury, and 
160 (1.56%) records with fatal injury. We have separated 
each output class and used one-against-all approach. This 
approach selects one output class to be the positive class, 
and all the other classes are combined to be the negative 
class. We set the output value of the positive class to 1, 
and the (combined) negative classes to 0. We divided the 
datasets randomly into 60%, 20%, and 20% for training, 
cross-validation, and testing respectively.  

To make sure that our data preparation is valid, 
we have checked the correctness of attribute selection. 
There are several attribute selection techniques to find a 
minimum set of attributes so that the resulting probability 
distribution of the data classes is as close as possible to 
the original distribution of all attributes. To determine the 
best and worst attributes, we used the chi-squared (χ2) 
test to determine the dependence of input and output 
variables. The χ2 test indicated that all the variables are 
significant (p-value < 0.05). 

 
3. Machine Learning Paradigms 
A. Artificial Neural Networks Using Hybrid Learning 

A Multilayer Perceptron (MLP) is a feed forward neural 
network with one or more hidden layers. 
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Table 1: Driver injury severity distribution 

Factor No Injury Pos injury 
Non- 

incapacitating Incapacitating Fatal Total 
Age 

0 (24&under) 1629(52.80%) 608(19.71%) 505(16.37%) 307(9.95%) 36(1.17%) 3085 
1 (25-64) 3171(49.88%) 1362(21.43%) 1075(16.91%) 654(10.29%) 95(1.49%) 6357 
2 (65+) 373(46.11%) 168(20.77%) 143(17.68%) 96(11.87%) 29(3.58%) 809 

Gender 
0 (Female) 1749(41.95%) 1072(25.71%) 778(18.66%) 507(12.16%) 63(1.51%) 4169 
1 (Male) 3424(56.30%) 1066(17.53%) 945(15.54%) 550(9.04%) 97(1.59%) 6082 

Eject 
0 (No Eject) 5171(50.55%) 2137(20.89%) 1719(16.80%) 1047(10.23%) 156(1.52%) 10230 

1 (Eject) 2(9.52%) 1(4.76%) 4(19.05%) 10(47.62%) 4(19.05%) 21 
Alcohol 

0 (No Alcohol) 4997(51.35%) 2067(21.24%) 1600(16.44%) 935(9.61%) 133(1.37%) 9732 
1 (Alcohol) 176(33.91%) 71(13.68%) 123(23.70%) 122(23.51%) 27(5.20%) 519 

Restraining System 
0 (Not Used) 337(27.44%) 193(15.72%) 336(27.36%) 283(23.05%) 79(6.43%) 1228 

1 (Used) 4836(53.60%) 1945(21.56%) 1387(15.37%) 774(8.58%) 81(0.90%) 9023 
Body Type 

0 (cars) 3408(47.49%) 1600(22.30%) 1272(17.73%) 780(10.87%) 116(1.62%) 7176 
1 (SUV &Van) 747(56.59%) 259(19.62%) 189(14.32%) 111(8.41%) 14(1.06%) 1320 

2 (Truck) 1018(58.01%) 279(15.90%) 262(14.93%) 166(9.46%) 30(1.71%) 1755 
Vehicle Role 

1 (Striking) 4742(49.86%) 2011(21.15%) 1636(17.20%) 970(10.20%) 151(1.59%) 9510 
2 (Struck) 261(72.70%) 54(15.04%) 29(8.08%) 15(4.18%) 0(0%) 359 
3 (Both) 170(44.50%) 73(19.11%) 58(15.18%) 72(18.85%) 9(2.36%) 382 

Rollover 
0 (No-rollover) 5069(50.78%) 2123(20.85%) 1699(16.69%) 1037(10.19%) 152(1.49%) 10180 

1 (Rollover) 4(5.63%) 15(21.13%) 24(33.80%) 20(28.17%) 8(11.27%) 71 
Road Surface Condition 

0 (Dry) 3467(49.97%) 1404(20.24%) 1190(17.15%) 750(10.81%) 127(1.83%) 6938 
1 (Slippery) 1706(51.49%) 734(22.16%) 533 (16.09%) 307(9.27%) 33(1.00%) 3313 

Light Condition 
0 (Daylight) 3613(51.18%) 1487(21.06%) 1174(16.63%) 688(9.75%) 98(1.39%) 7060 

1(Partial dark) 1139(52.71%) 465(21.52%) 348(16.10%) 186(8.61%) 23(1.06%) 2161 
2 (Dark) 421(40.87%) 186(18.06%) 201(19.51%) 183(17.77%) 39(3.79%) 1030 

 

The network consists of an input layer of source neurons, 
at least one hidden layer of computational neurons, and 
an output layer of computational neurons. The input layer 
accepts input signals and redistributes these signals to all 
neurons in the hidden layer. The output layer accepts a 
stimulus pattern from the hidden layer and establishes the 
output pattern of the entire network. The MLP neural 
networks training phase works as follows: given a 
collection of training data {x1(p), d1(p)}, …, {xi(p), 
di(p)}, …, {xn(p), dn(p)}, the objective is to obtain a set 
of weights that makes almost all the tuples in the training 

data classified correctly, or in other words, is to map 
{x1(p) to d1(p)}, …, {xi(p) to di(p)}, and eventually {xn(p) 
to dn(p)}. The algorithm starts with initializing all the 
weights (w) and threshold (θ) levels of the network to 
small random numbers. Then calculate the actual output 
of the neurons in the hidden layer as:  

yi(p) = f [∑(i=1 to n) xi(p) * wij(p) - θj],  
where n is the number of inputs of neuron j in the hidden 
layer. Next calculate the actual outputs of the neurons in 
the output layer as:  

yk(p) = f [∑(j=1 to m)xjk(p) * wjk(p) - θk],  
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where m is the number of inputs of neuron k in the 
output layer. The weight training is to update the weights 
using the Backpropagation (BP) learning method with 
the error function: 

E (w) = ∑ (p= 1 to PT) ∑ (i= 1 to l) [di(p) – yi(p)]2 , 
where 

E (w) = error function to be minimized,  
 w = weight vector, 
PT = number of training patterns, 
l = number of output neurons, 
di(p) = desired output of neuron I when pattern p 

is introduced to the MLP, and  
yi(p) = actual output of the neuron I when 

pattern p is introduced to the MLP. The objective of 
weight training is to change the weight vector w so that 
the error function is minimized. By minimizing the error 
function, the actual output is driven closer to the desired 
output.  

Empirical research [19] has shown that the BP 
used for training neural networks has the following 
problems: 

• BP often gets trapped in a local minimum mainly 
because of the random initialization of weights. 

• BP usually generalizes quite well to detect the global 
features of the input but after prolonged training the 
network will start to recognize individual 
input/output pair rather than settling for weights that 
generally describe the mapping for the whole training 
set. 

The second popular training algorithm for 
neural networks is Scaled Conjugate Gradient Algorithm 
(SCGA). Moller [20] introduced it as a way of avoiding 
the complicated line search procedure of conventional 
conjugate gradient algorithm (CGA). According to the 
SCGA, the Hessian matrix is approximated by 
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where E' and E" are the first and second derivative 
information of global error function E (wk). The other 
terms pk, σk and λk represent the weights, search direction, 
parameter controlling the change in weight for the 
second derivative approximation and parameter for 
regulating the indefiniteness of the Hessian. In order to 
obtain a good, quadratic, approximation of E, a 
mechanism to raise and lower λk is needed when the 
Hessian is positive definite. Detailed step-by-step 
description can be found in [20]. 

In order to minimize the above-mentioned 
problems resulting from the BP training, we used a 
combination of BP and SCG for training. 

B. Decision Trees 

Decision trees are well-known algorithm for 
classification problems. The Classification and 
Regression Trees (CART) model consists of a hierarchy 
of univariate binary decisions. Each internal node in the 
tree specifies a binary test on a single variable, branch 
represents an outcome of the test, each leaf node 

represent class labels or class distribution. CART 
operates by choosing the best variable for splitting the 
data into two groups at the root node, partitioning the 
data into two disjoint branches in such a way that the 
class labels in each branch are as homogeneous as 
possible, and then splitting is recursively applied to each 
branch, and so forth.  

If a dataset T contains examples from n classes, 
gini index, gini(T) is defined as: gini (T) = 1 - ∑j=1 to n 
pj^2, where pj is the relative frequency of class j in T 
[31]. If dataset T is split into two subsets T1 and T2 with 
sizes N1 and N2, the gini index of the split data contains 
examples from n classes, the gini index gini(T) is defined 
as: 

gini split (T) = N1/N gini(T1) + N2/N gini(T2).  
CART exhaustively searches for univariate 

splits. The attribute provides the smallest gini split (T) is 
chosen to split the node. CART recursively expands the 
tree from a root node, and then gradually prunes back the 
large tree. The advantage of a decision tree is the 
extraction of classification rules from trees that is very 
straightforward. More precisely, a decision tree can 
represent the knowledge in the form of if-then rules; one 
rule is created for each path from the root to a leaf node. 

C. Support Vector Machines 

Support Vector Machine (SVM) is based on statistical 
learning theory [28] . SVMs have been successfully 
applied to a number of applications ranging from 
handwriting recognition, intrusion detection in computer 
networks, and text categorization to image classification, 
breast cancer diagnosis and prognosis and 
bioinformatics. SVM involves two key techniques, one is 
the mathematical programming and the other is kernel 
functions. Here, parameters are found by solving a 
quadratic programming problem with linear equality and 
inequality constraints; rather than by solving a non-
convex, unconstrained optimization problem. SVMs are 
kernel-based learning algorithms in which only a fraction 
of the training examples are used in the solution (these 
are called the support vectors), and where the objective 
of learning is to maximize a margin around the decision 
surface. The flexibility of kernel functions allows the 
SVM to search a wide variety of hypothesis spaces. The 
basic idea of applying SVMs to pattern classification can 
be stated briefly as: first map the input vectors into one 
feature space (possible with a higher dimension), either 
linearly or nonlinearly, whichever is relevant to the 
selection of the kernel function; then within the feature 
space, seek an optimized linear division, i.e. construct a 
hyperplane which separates two classes.  

For a set of n training examples (xi, yi), where xi 
∈ Rd and yi ∈{-1, +1}, suppose there is a hyperplane, 
which separates the positive from the negative examples. 
The points x which lie on the hyperplane (H0) satisfy w · 
x + b = 0, the algorithm finds this hyperplane (H0) and 
other two hyperplanes (H1, H2) parallel and equidistant to 
H0, 

H1: w · xi + b = 1, H2: w · xi + b = -1,  
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H1 and H2 are parallel and no training points fall between 
them. Support vector algorithm looks for the separating 
hyperplane and maximizes the distance between H1 and 
H2. So there will be some positive examples on H1 and 
some negative examples on H2. These examples are 
called support vectors. The distance between H1 and H2 
is 2/||w||, in order to maximize the distance, we should 
minimize ||w|| = wTw, subject to constraints yi (w · xi + b) 
>= 1, ∀i 

Introducing Lagrangian multipliers α1, α2, …, αn>=0, 
the learning task becomes  
L (w, b, α) = ½ wTw - ∑i=1 to n αI[yi(w · xi + b) – 1] 
The above equation is for two classes that are linearly 
separable. When the two classes are non-linearly 
separable, SVM can transform the data points to another 
high dimensional space. Detailed description to the 
theory of SVMs for pattern recognition can be found in 
[32]. 

 
Fig. 1. Hybrid concurrent decision tree-ANN model for 
accident data 

 

Fig. 2. Decision tree structure 

D. Hybrid Decision Tree-ANN (DTANN) 

A hybrid intelligent system uses the approach of 
integrating different learning or decision-making models. 
Each learning model works in a different manner and 
exploits different set of features. Integrating different 
learning models gives better performance than the 
individual learning or decision-making models by 
reducing their individual limitations and exploiting their 
different mechanisms. In a hierarchical hybrid intelligent 
system each layer provides some new information to the 

higher level [33]. The overall functioning of the 
system depends on the correct functionality of all the 
layers. Figure 1 illustrates the hybrid decision tree-ANN 
(DTANN) model for predicting drivers’ injury severity. 
We used a concurrent hybrid model where traffic 
accidents data are fed to the decision tree to generate the 
node information. Terminal nodes were numbered left to 
right starting with 1. All the data set records were 
assigned to one of the terminal nodes, which represented 
the particular class or subset. The training data together 
with the node information were supplied for training the 
ANN. Figure 2 illustrates a decision tree structure with 
the node numbering. For the hybrid decision tree–ANN, 
we used the same hybrid learning algorithms and 
parameters setting as we used for ANN (except for the 
number of hidden neurons). Experiments were performed 
with different number of hidden neurons and models 
were selected with the highest classification accuracy for 
the output class.  

4. Performance Analysis 

A. Neural Networks 

In the case of neural network based modeling, the 
hyperbolic activation function was used in the hidden 
layer and the logistic activation function in the output 
layer. Models were trained with BP (100 epochs, 
learning rate 0.01) and SCGA (500 epochs) to minimize 
the Mean Squared Error (MSE). For each output class, 
we experimented with different number of hidden 
neurons, and report the model with highest classification 
accuracy for the class. From the experiment results, for 
the no injury class the best model had 65 hidden neurons, 
and achieved training and testing performance of 63.86% 
and 60.45% respectively. For the possible injury class, 
the best model had 65 hidden neurons achieving it’s 
training and testing performance of 59.34% and 57.58% 
respectively. For the non-incapacitating injury class, the 
best model had 75 hidden neurons achieving training and 
testing performance of 58.71% and 56.8% respectively. 
For the incapacitating injury class, the best model had 60 
hidden neurons achieving training and testing 
performance of 63.40% and 63.36% respectively. 
Finally, for the fatal injury class, the best model had 45 
hidden neurons achieving training and testing 
performance of 78.61% and 78.17% respectively. These 
results are the summary of multiple experiments (for 
variable no of hidden neurons and for a number of 
attempts with random initial weight distributions 
resulting in almost exact performance of the trained 
network) and are presented in Table 2. 

B. Decision Trees 

We have experimented with a number of setups of 
decision tree parameters and report the best results 
obtained for our dataset. We trained each class with Gini 
goodness of fit measure, the prior class probabilities 
parameter was set to equal, the stopping option for 
pruning was misclassification error, the minimum n per 
node was set to 5, the fraction of objects was 0.05, the 
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maximum number of nodes was 1000, the maximum 
number of levels in the tree was 32, the number of 
surrogates was 5, we used 10 fold cross-validation, and 
generated comprehensive results. The cross-validation 

testing ensured that the patterns found will hold up when 
applied to new data. 

 
 

Table 2. Neural network performance 

Table 2. Neural 
network performance 

No Injury 
Possible Injury Non-incapacitating Incapacitating Fatal Injury 

Accuracy % Accuracy % Accuracy % Accuracy % Accuracy % # 
neuron

s Train Test 

# 
neuron

s Train Test 

# 
neuron

s Train Test 

# 
neuron

s Train Test 

# 
neuron

s Train Test 

60 63.57 59.67 65 59.34 57.58 60 57.88 55.25 60 63.4 63.36 45 77.26 75.17

65 63.86 60.45 70 59.56 55.15 65 57.69 54.66 65 62.23 61.32 57 74.78 70.65

70 63.93 60.25 75 58.88 57.29 75 58.71 56.80 75 61.06 61.52 65 69.81 69.73

75 64.38 57.43 80 58.39 56.22 80 57.78 54.13 84 63.23 58.41 75 60.19 59.62

80 63.64 58.89 95 60.07 55.93 85 57.83 55.59 90 59.32 59.08 80 74.33 71.77

Table 3: Performance of SVM using radial basis function kernel 

 g=0.0001 
c=42.8758 

g=0.001 
c=4.6594 

g=0.5
c=0.5 

g=1.2
c=0.5 

g=1.5 
c=2 

g=2 
c=10 

g=0.00001 
c=100 

g=0.0001 
c=100 

g=0.001
c=100 

No injury  

Class 0 59.76 59.80 57.95 57.65 53.62 54.12 57.34 59.76 60.46 

Class 1 60.14 60.14 60.82 55.63 55.73 55.53 62.88 60.14 60.14 

Possible injury 

Class 0 100.00 100.00 100.00 99.88 95.33 95.58 100.00 100.00 100.00 

Class 1 0.00 0.00 0.00 0.00 3.67 3.42 0.00 0.00 0.00 

Non-incapacitating 

Class 0 100.00 100.00 100.00 100.00 97.43 97.49 100.00 100.00 100.00 

Class 1 0.00 0.00 0.00 0.00 3.21 2.92 0.00 0.00 0.00 

Incapacitating 

Class 0 100.00 100.00 100.00 99.89 98.06 98.11 100.00 100.00 100.00 

Class 1 0.00 0.00 0.00 0.00 2.83 2.83 0.00 0.00 0.00 

Fatal Injury 

Class 0 100.00 100.00 100.00 100.00 99.95 99.95 100.00 100.00 100.00 

Class 1 0.00 0.00 0.00 0.00 3.33 3.33 0.00 0.00 0.00 
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Table 4. Decision tree performance 

Injury Class Accuracy (%) 

No Injury 67.54 

Possible Injury 64.40 

Non-incapacitating Injury 60.37 

Incapacitating Injury 71.38 

Fatal Injury 89.46 
 

The performance for no injury, possible injury, non-
incapacitating injury, incapacitating injury and fatal 
injury models was 67.54%, 64.39%, 60.37%, 71.38%, 
and 89.46% respectively. Empirical results including 
classification matrix are illustrated in Table 4. The 
developed decision trees are depicted in Figures 3-7. 
Each of these trees has a completely different structure 
and number of nodes and leaves. Note, that information 
stored in leaves of exactly these decision trees has been 
used in developing the hybrid decision tree – neural 
network model. 

 

 
Fig. 3: No injury tree structure 

 
Fig. 4: Possible injury tree structure 

 
Fig. 5: Non-incapacitating injury tree structure 

 
Fig. 6: Incapacitating injury tree structure 

 
Fig. 7: Fatal injury tree structure 

C. Support Vector Machines 

In our experiments we used the SVMlight [27] and 
selected the polynomial and radial basis function kernels. 
For an unknown reason, the polynomial kernel was not 
successful and hence we only focused on the radial basis 
function (RBF) kernels. Table 3 illustrates the SVM 
performance for the different parameter settings and the 
obtained accuracies for each class. 

D. Hybrid DT-ANN Approach 

In the case of the hybrid approach, for the no injury class 
the best model had 70 hidden neurons, with training and 
testing performance of 83.02% and 65.12% respectively. 
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For the possible injury class, the best model had 98 
hidden neurons with training and testing performance of 
74.93% and 63.10% respectively. For the non-
incapacitating injury class, the best model had 109 
hidden neurons with training and testing performance of 
71.88% and 62.24% respectively. For the incapacitating 
injury class, the best model had 102 hidden neurons, with 
training and testing performance of 77.95% and 72.63% 
respectively. Finally, for the fatal injury class, the best 
model had 76 hidden neurons with training and testing 
performance of 91.53% and 90.00% respectively. These 
are the best models out of multiple experiments varying 
various parameters of the ANN and the decision tree. 
Empirical results are presented in Table 5 and the final 
comparison between ANN, DT and DTANN is 
graphically illustrated in Figure 8. For all the output 
classes, the hybrid DTANN outperformed the ANN. For 
non-incapacitating injury, incapacitating injury, and fatal 
injury classes, the hybrid DTANN outperformed both 
ANN and DT. 

 
 
Fig. 8. Performance comparison of the different learning 
paradigms 

Table 5. Test performance of DTANN 

Injury type % Accuracy 

No injury 65.12 
Possible injury 63.10 

Non-incapacitating injury 62.24 
Incapacitating injury 72.63 

Fatal injury 90.00 
 

5. Concluding Remarks 

In this paper, we analyzed the GES automobile accident 
data from 1995 to 2000 and investigated the performance 
of neural network, decision tree, support vector machines 
and a hybrid decision tree – neural network based 
approaches to predicting drivers’ injury severity in head-
on front impact point collisions. The classification 
accuracy obtained in our experiments reveals that, for the 
non-incapacitating injury, the incapacitating injury, and 
the fatal injury classes, the hybrid approach performed 
better than neural network, decision trees and support 
vector machines. For the no injury and the possible 
injury classes, the hybrid approach performed better than 

neural network. The no injury and the possible injury 
classes could be best modeled directly by decision trees. 

Past research focused mainly on distinguishing 
between no-injury and injury (including fatality) classes. 
We extended the research to possible injury, non-
incapacitating injury, incapacitating injury, and fatal 
injury classes. Our experiments showed that the model 
for fatal and non-fatal injury performed better than other 
classes. The ability of predicting fatal and non-fatal 
injury is very important since drivers’ fatality has the 
highest cost to society economically and socially.  

It is well known that one of the very important 
factors causing different injury level is the actual speed 
that the vehicle was going when the accident happened. 
Unfortunately, our dataset doesn’t provide enough 
information on the actual speed since speed for 67.68% 
of the data records’ was unknown. If the speed was 
available, it is extremely likely that it could have helped 
to improve the performance of models studied in this 
paper. 
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