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Abstract: Recently, Particle Swarm Optimization (PSO) algorithm has exhibited
good performance across a wide range of application problems. A quick review of the
literature reveals that research for solving the Quadratic Assignment Problem (QAP)
using PSO approach has not much been investigated. In this paper, we design a hy-
brid meta-heuristic fuzzy scheme, called as variable neighborhood fuzzy particle swarm
algorithm (VNPSO), based on fuzzy particle swarm optimization and variable neigh-
borhood search to solve the QAP. In the hybrid fuzzy scheme, the representations of
the position and velocity of the particles in the conventional PSO is extended from the
real vectors to fuzzy matrices. A new mapping is introduced between the particles in
the swarm and the problem space in an efficient way. We also attempt to theoretically
prove that the variable neighborhood particle swarm algorithm converges with a prob-
ability of 1 towards the global optimal. The performance of the proposed approach
is evaluated and compared with other four different algorithms. Empirical results il-
lustrate that the approach can be applied for solving quadratic assignment problems
effectively.

Key Words: Particle swarm optimization, Variable neighborhood search, Quadratic
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Category: I.2, I.2.2, I.2.8

1 Introduction

Particle Swarm Optimization (PSO) algorithm is inspired by social behavior
patterns of organisms that live and interact within large groups. In particular,
PSO incorporates swarming behaviors observed in flocks of birds, schools of fish,
or swarms of bees, and even human social behavior, from which the Swarm Intel-
ligence (SI) paradigm has emerged [Kennedy and Eberhart 2001, Clerc 2006]. It
could be implemented and applied easily to solve various function optimization
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problems, or the problems that can be transformed to function optimization
problems [Parsopoulos and Vrahatis 2002, Margarita and Carlos 2006]. As an
algorithm, the main strength of PSO is its fast convergence, which compares with
other global optimization algorithms [Eberhart and Shi 1998, Settles et al. 2003,
Boeringer and Werner 2004]. PSO has exhibited good performance across a wide
range of applications [Schute and Groenwold 2005, Abraham et al. 2006a]. How-
ever, research on discrete problems, especially Quadratic Assignment Problem
(QAP), has not been reported very much in the literature [Pang et al. 2004,
Kennedy and Eberhart 1997, Abraham et al. 2006b]. In this paper, we design a
hybrid meta-heuristic fuzzy scheme, called as VNPSO, based on discrete particle
swarm optimization variable neighborhood search to solve quadratic assignment
problems.

The rest of the paper is organized as follows. Related works about QAP is
reviewed in Section 2. We formulate the quadratic assignment problem in Sec-
tion 3. Particle swarm model is presented and the effects on the change of the
velocities of particles are analyzed in Section 4. In Section 5, we describe the
VNPSO model in detail. In Section 6, we theoretically prove the properties re-
lated to the convergence of the proposed algorithm. Experiment settings, results
and discussions are given in Section 7 and finally conclusions are given in Section
8.

2 Related Works

Koopmans and Beckmann first proposed the quadratic assignment problem as a
mathematical model related to economic activities [Koopmans et al. 1957]. Since
then, it has several good practical applications in diverse areas [Heffley 1980],
[Anstreicher et al. 2002, Ciriani et al. 2004, Miranda et al. 2005], [Loiola et al.
2007]. Since its first formulation, the QAP has been drawing researchers’ at-
tention worldwide, not only because of its practical and theoretical importance,
but also because of its complexity. The QAP is a NP-hard optimization problem
[Wikipedia 2006]. While some NP-hard combinatorial optimization problems can
be solved exactly for relatively large instances, as exemplified by the traveling
salesman problem (TSP), QAP instances of size larger than 20 are considered
intractable.

Researchers worldwide made attempts to achieve a global optimum for the
QAP using variant methods, including the exact, heuristic and hybrid methods.
Gilmore [Gilmore 1962] and Lawler [Lawler 1963] presented firstly the enumer-
ative schemes that use lower bounds to eliminate undesired solutions. Some
variations of the approach are proposed in [Bozer and Suk-Chul 1996], [Ball et
al. 1998]. Some methods that combine branch-and-bound with parallel tech-
niques are used effectively in [Mautor and Roucairol 1994], [Clausen and Per-
regaard 1997]. Cutting plane methods and its formulation of some heuristics
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are introduced in [Bazaraa and Sherali 1982, Miranda et al. 2005] The branch-
and-cut technique, a variation is proposed in [Jünger and Kaibel 2001]. Erdoğan
and Tansel reports recently some computational experiences and results with a
branch-and-cut algorithm [Erdoğan and Tansel 2007]. Since the QAP is one of
the hardest optimization problems, it is difficult for the exact algorithms to
exhibit a very good performance on the problem, specially on the large scale
ones [Angel and Zissimopoulos 2000]. Therefore, several heuristics and meta-
heuristics have been proposed for finding optimum or near-optimum solutions for
the problems. Constructive methods are used in [Gutin and Yeo 2002], [Arkin
et al. 2001], [Yu and Sarker 2003]. Arora et al. proposed a randomized proce-
dure for rounding fractional perfect assignments to integral assignments [Arora
et al. 2002]. Several general techniques, known as meta-heuristics, are based on
some form of simulation of a natural process studied within another field of
knowledge (metaphors). With the advent of meta-heuristics, QAP research re-
ceived new and increased interest [Loiola et al. 2007]. Since Burkard and Rendl
used Simulated Annealing (SA) to solve the QAP [Burkard and Rendl 1984],
many improved methods based SA are presented in [Bos 1993, Tian et al. 1996,
Misevicius 2003]. Tabu Search (TS) for the QAP can be found in [Chakrapani
and Skorin-Kapov 1993], [Taillard 1991], [Drezner 2005], [Misevicius 2005]. De-
spite the inconvenience of depending on the size of the tabu list and the way
which the list is managed, the performances of those algorithms show they are
very efficient strategies for the QAP. More researchers investigate how to use
Genetic Algorithms (GA) on QAP [Tate and Smith 1995, Kochhar et al. 1998,
Lim et al. 1998, Drezner et al. 2003, El-Baz 2004, Drezner et al. 2005a]. There
are some other search techniques for solving the QAP, such as scatter search
[Cung et al. 1997], memetic algorithms [Merz and Freisleben 2000], greedy algo-
rithm [Angel et al. 2000], greedy randomized adaptive search procedure [Oliveira
et al. 2004], variable neighborhood search recently [Zhang et al. 2005], chaotic
search [Hasegawa et al. 2002]. Some local search techniques are also used to
achieve the solution to QAP [Mills et al. 2003, Angel and Zissimopoulos 1998,
Stützle 2006]. Many research show Ant Colony Optimization (ACO) technique as
a competitive meta-heuristic for the QAP [Gambardella et al. 1999], [Maniezzo
and Colorni 1999], [Stützle and Holger 2000, Talbi et al. 2001], [Middendorf et
al. 2002], [Randall 2004, Solimanpur et al. 2004, Wiesemann and Stützle 2006].
All the above methods possess respective advantages and disadvantages. Some of
comparison research has been reported in [Taillard 1995], [Merz and Freisleben
1999]. However, as reported in the literature, some hybrid ideas has proven to
be more efficient [Loiola et al. 2007]. Yip and Sarker proposed a guided evolu-
tionary simulated annealing approach for solving the QAP [Yip and Pao 1994].
A combination of simulated annealing and genetic algorithm is presented in
[Boülte and Thonemann 1996]. Battiti and Tecchiolli used tabu search with sim-
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ulated annealing for solving the QAP [Battiti and Tecchiolli 1994]. Ostrowski
and Ruoppila proposed hybrid genetic algorithms based on GA and SA [Os-
trowski and Ruoppila 1997]. Some techniques used parallel and massive com-
putation for solving QAP [Roucairol 1987, Chakrapani and Skorin-Kapov 1993,
Talbi et al. 2001]. In addition, some assistant strategies are often used to explore
a better solution for the QAP. Multistart techniques are usually used to begin
heuristic or meta-heuristic methods [Fleurent and Glover 1999, Misevicius 2004].
Kelly et al. studied diversification strategies for the QAP [Kelly et al. 1994].
Nissen and Paul applied the threshold accepting technique to the QAP [Nissen
and Paul 1995]. Most of the hybrid algorithms have proven to be more promis-
ing than the corresponding algorithms when used in a stand-alone mode. More
survey of the related literature are reported in [Çela 1998, Anstreicher 2003,
Drezner et al. 2005b, Loiola et al. 2007], which would be very helpful for the
readers to understand the QAP more completely.

3 Quadratic Assignment Problem

The quadratic assignment problem is a standard problem in location theory. It
was introduced by Koopmans and Beckmann in [Koopmans et al. 1957] and is a
model for the practical problems [Fedjki and Duffuaa 2004, Stützle 2006]. Intu-
itively, the QAP can be described as the problem of assigning a set of facilities
to a set of locations with given distances between the locations and given flows
between the facilities. The goal then is to place the facilities on locations in such
a way that the sum of the product between flows and distances is minimal. More
formally, given n facilities {F1, F2, · · · , Fn} and n locations {L1, L2, · · · , Ln},
two n × n matrices FM = [fij ] and DM = [drs], where fij is the flow between
facilities Fi and Fj and drs is the distance between locations Lr and Ls, the
QAP can be stated as follows:

min
Π∈P (n)

ZΠ =
n∑

i=1

n∑
j=1

fijdΠiΠj (1)

where P (n) is the set of all permutations (corresponding to the assignment solu-
tions) of the set of integers {1, 2, · · · , n}, and Πi gives the location of facility Fi

in the current solution Π ∈ P (n). Here fijdΠiΠj describes the cost contribution
of simultaneously assigning facility Fi to location Πi and facility Fj to location
Πj . It is to be noted that the number of facilities (n) is assumed to be the same
as the number of locations. In the other word, one facility could be assigned to
only one location, and one location could be assigned to only one facility in a
feasible assignment solution.

The term quadratic stems from the formulation of the QAP as an integer
optimization problem with a quadratic objective function [Stützle 2006]. Let bij
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be a binary variable which takes value 1 if facility Fi is assigned to location Lj

and 0 otherwise. Then the problem can be re-formulated as:

min
n∑

i=1

n∑
j=1

n∑
r=1

n∑
s=1

fijdrsbirbjs (2)

s.t.
n∑

i=1

bij = 1, i = 1, 2, · · · , n, j = 1, 2, · · · , n; (3)

n∑
j=1

bij = 1, i = 1, 2, · · · , n, j = 1, 2, · · · , n; (4)

bij ∈ {0, 1}, i = 1, 2, · · · , n, j = 1, 2, · · · , n. (5)

4 Particle Swarm Model

The classical particle swarm model consists of a swarm of particles, which are
initialized with a population of random candidate solutions. They move itera-
tively through the d-dimension problem space to search the new solutions, where
the fitness, f , can be calculated as the certain qualities measure. Each particle
has a position represented by a position-vector pi (i is the index of the particle),
and a velocity represented by a velocity-vector vi. Each particle remembers its
own best position so far in a vector p#

i , and its j-th dimensional value is p#
ij .

The best position-vector among the swarm so far is then stored in a vector p∗,
and its j-th dimensional value is p∗j . During the iteration time t, the update of
the velocity from the previous velocity to the new velocity is determined by Eq.
(6). The new position is then determined by the sum of the previous position
and the new velocity by Eq. (7).

vij(t) = wvij(t−1)+c1r1(p
#
ij(t−1)−pij(t−1))+c2r2(p∗j (t−1)−pij(t−1)) (6)

pij(t) = pij(t − 1) + vij(t) (7)

where r1 and r2 are the random numbers in the interval [0,1]. c1 is a positive
constant, called as coefficient of the self-recognition component, c2 is a positive
constant, called as coefficient of the social component. The variable w is called
as the inertia factor, which value is typically setup to vary linearly from 1 to near
0 during the iterated processing. From Eq.(6), a particle decides where to move
next, considering its current state, its own experience, which is the memory of
its best past position, and the experience of its most successful particle in the
swarm.
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In the particle swarm model, the particle searches the solutions in the prob-
lem space within a range [−s, s] (If the range is not symmetrical, it can be
translated to the corresponding symmetrical range.) In order to guide the par-
ticles effectively in the search space, the maximum moving distance during one
iteration is clamped in between the maximum velocity [−vmax, vmax] given in
Eq. (8), and similarly for its moving range given in Eq. (9):

vij = sign(vij)min(|vij | , vmax) (8)

pij = sign(pij)min(|pij | , pmax) (9)

The value of vmax is ρ × s, with 0.1 ≤ ρ ≤ 1.0 and is usually chosen to
be s, i.e. ρ = 1. The pseudo-code for particle swarm optimization algorithm is
illustrated in Algorithm 1.

Algorithm 1 Particle Swarm Optimization Algorithm
01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. While (the end criterion is not met) do
04. t = t + 1;
05. Calculate the fitness value of each particle;
06. p∗ = argminn

i=1(f(p∗(t − 1)), f(p1(t)), f(p2(t)), · · · , f(pi(t)), · · · ,

f(pn(t)));
07. For i= 1 to n

08. p#
i (t) = argminn

i=1(f(p#
i (t − 1)), f(pi(t));

09. For j = 1 to d

10. Update the j-th dimension value of pi and vi

10. according to Eqs.(6),(8),(7),(9);
12. Next j

13. Next i

14. End While.

Some previous studies have discussed the trajectory of particles and its con-
vergence [Cristian 2003], [Van den Bergh and Engelbrecht 2006], [Liu et al. in
press a], [Clerc and Kennedy 2002]. It has been shown that the trajectories of
the particles oscillate as different sinusoidal waves and converge quickly, some-
times prematurely. The effects of the change in the velocities of particles has
been paid little attention. The gradual change of the particle’s velocity can be
explained geometrically. During each iteration, the particle is attracted towards
the location of the best fitness achieved so far by the particle itself and by the
location of the best fitness achieved so far across the whole swarm. From Eq.(6),
vij can attain a smaller value, but if the second term and the third term in RHS
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of Eq.(6) are both small, it cannot resume a larger value and could eventually
loose the exploration capabilities in the future iterations. Such situations could
occur even in the early stages of the search. When the second term and the third
term in RHS of Eq.(6) are zero, vij will be damped quickly with the ratio of w.
In other words, if a particle’s current position coincides with the global best
position/particle, the particle will only move away from this point if its previous
velocity and w are non-zero. If their previous velocities are very close to zero,
then all the particles will stop moving once they catch up with the global best
particle, which many lead to premature convergence. In fact, this does not even
guarantee that the algorithm has converged to a local minimum and it merely
means that all the particles have converged to the best position discovered so
far by the swarm. This state owes to the second term and the third term in
the RHS of Eq.(6), the cognitive components of the PSO. But if the cognitive
components of the PSO algorithm are invalidated, all particles always search the
solutions using the initial velocities. Then the algorithm is merely a degenera-
tive stochastic search without the characteristics of PSO. Some related research
and development during the recent years are reported in [Grosan et al. 2005,
Jiang et al. 2005, Liu et al. 2006a, Liu et al. 2006b, Liang et al. 2006].

5 Fuzzy Variable Neighborhood Particle Swarm Optimization
for the Quadratic Assignment Problem

For applying the particle swarm algorithm successfully for any problem, one of
the key issues is how to map the problem solution to the particle space, which
affects its feasibility and performance [Salman et al. 2001, Pang et al. 2004]. In
a “crisp” particle swarm model for the assignment problem, it would trend to
assign many facilities to the same location or assign many locations to the same
facility. Usually this kind of the assignment would be unfeasible. In this section, a
fuzzy matrix is introduced to represent the quadratic assignment problem. Then,
a new approach to the problem space mapping is depicted for particle swarm
optimization with reference to the quadratic assignment problem. For solving the
QAP, which is considered as one of the hardest optimization problems, it would
be very difficult for a particle swarm search to use a simple exploring strategy
to search the optimal solution. We introduce a novel shaking strategy to drive
those “lazy” particles in the swarm and let them explore variable neighborhoods
for better solutions.
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5.1 A Fuzzy Particle Swarm Approach for QAP

Suppose F = {F1, F2, · · · , Fn}, L = {L1, L2, · · · , Ln}, then the fuzzy assignment
relation from F to L can be expressed as follows:

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦

Here aij represents the degree of membership of the j-th element Fj in domain F

and the i-th element Li in domain L to relation A. In the fuzzy relation matrix
A between F and L, the elements subject to the following constraints:

aij = μR(Fj , Li), i = 1, 2, · · · , n, j = 1, 2, · · · , n. (10)

μR is the membership function, the value of aij means the degree of membership
that the facility Fj would be assigned to the location Li in the feasible assignment
solution. In the quadratic assignment problem, the elements of the solution must
satisfy the following conditions:

aij ∈ {0, 1}, i = 1, 2, · · · , n, j = 1, 2, · · · , n; (11)

n∑
i=1

aij = 1, i = 1, 2, · · · , n, j = 1, 2, · · · , n; (12)

n∑
j=1

aij = 1, i = 1, 2, · · · , n, j = 1, 2, · · · , n. (13)

According to the fuzzy matrix representation of the quadratic assignment
problem, the position p and velocity v in the particle swarm are re-defined as
follows:

p =

⎡
⎢⎢⎢⎣

p11 p12 · · · p1n

p21 p22 · · · p2n

...
...

. . .
...

pn1 pn2 · · · pnn

⎤
⎥⎥⎥⎦ ; v =

⎡
⎢⎢⎢⎣

v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vn1 vn2 · · · vnn

⎤
⎥⎥⎥⎦

The elements in the matrix p above have the same meaning as Eq.(10). Accord-
ingly, the elements of the matrix p must satisfy the following conditions:

pij ∈ {0, 1}, i = 1, 2, · · · , n, j = 1, 2, · · · , n; (14)

n∑
i=1

pij = 1, i = 1, 2, · · · , n, j = 1, 2, · · · , n; (15)
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n∑
j=1

pij = 1, i = 1, 2, · · · , n, j = 1, 2, · · · , n. (16)

Because the position and velocity in the new fuzzy particle swarm model have
been transformed to the form of matrices, they are updated by the new Eqs.(17)
and (18) with the matrix operations.

v(t) = w ⊗ v(t − 1) ⊕ (c1r1) ⊗ (p#(t − 1) � p(t − 1))

⊕ (c2r2) ⊗ (p∗(t − 1) � p(t − 1))
(17)

p(t) = p(t − 1) ⊕ v(t) (18)

The position matrix may violate the constraints (14), (15) and (16) after
some iterations, it is necessary to normalize the position matrix. First we make
all the negative elements in the matrix to become zero. If all elements in a
column of the matrix are zero, they need be re-evaluated using a series of random
numbers within the interval [0,1]. And then the matrix undergoes the following
transformation:

pnormal =

⎡
⎢⎢⎢⎣

p11/
∑n

i=1 pi1 p12/
∑n

i=1 pi2 · · · p1n/
∑n

i=1 pin

p21/
∑n

i=1 pi1 p22/
∑n

i=1 pi2 · · · p2n/
∑n

i=1 pin

...
...

. . .
...

pn1/
∑n

i=1 pi1 pn2/
∑n

i=1 pi2 · · · pnn/
∑n

i=1 pin

⎤
⎥⎥⎥⎦

Since the position matrix indicates the potential assigned solution, the fuzzy
matrix can be “decoded” to the feasible solution. We choose the element which
has the max value in the column, then tag it as “1”, and other numbers in the
column and row are set as “0” in the assigning matrix. After all the columns
and rows have been processed, we get the assignment solution without violating
the constraints (14), (15) and (16), and then calculate the assignment cost of
the solution. Although the fuzzy coding solution is a very good mapping idea, it
is difficult for the particle swarm algorithm alone to search the best solutions to
the QAP, especially for the large scale problems [Liu et al. in press b]. We will
discuss a hybrid approach to the QAP in the next subsections.

5.2 Variable Neighborhood Particle Swarm Optimization for QAP

Variable Neighborhood Search (VNS) is a relatively recent metaheuristic which
relies on iteratively exploring neighborhoods of growing size to identify bet-
ter local optima with shaking strategies [Hansen and Mladenović 2003]. More
precisely, VNS escapes from the current local minimum x∗ by initiating other
local searches from starting points sampled from a neighborhood of x∗, which
increases its size iteratively until a local minimum is better than the current
one is found. These steps are repeated until a given termination condition is
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met. The shaking strategy usually is based on insert and interchange operators
[Hansen and Mladenović 2001]. But for quadratic assignment problems, those
operators would change the sequence of the encoded facilities, which makes it
difficult to decode the particles’ position to the potential solutions. The meta-
heuristic method, the VNPSO, was originally inspired by VNS. In the particle
swarm, if a particle’s velocity decreases to a threshold vc, a new velocity is as-
signed using Eq.(19):

pij(t) = wv̂ + c1r1(p
#
ij(t − 1) − pij(t − 1)) + c2r2(p∗j (t − 1) − pij(t − 1)) (19)

v̂ =

{
vij if |vij | ≥ vc

rand(−1, 1)vmax/η if |vij | < vc

(20)

where rand(−1, 1) is the random number, normally distributed within the in-
terval [-1,1], and η is the variable neighborhood scaling factor to control the
domain of the particle’s oscillation according to vmax. vc is the minimum ve-
locity threshold, a tunable threshold parameter to limit the minimum of the
particles’ velocity. The proposed algorithm scheme is summarized as Algorithm
2. For QAP, the variables and the operators need be transformed to the form of
matrices, as illustrate Eqs. (17) and (18). The performance of the algorithm is
directly correlated to two parameter values, vc and η. A large vc shortens the os-
cillation period, and it provides a great probability for the particles to leap over
local minima using the same number of iterations. But a large vc compels the
particles in the quick “flying” state, which leads them not to search the solution
and forcing them not to refine the search. The value of η changes directly the
variable search neighborhoods for the particles. It is to be noted that the algo-
rithm is different from the multi-start technique and the turbulence strategy. We
also implemented the Multi-Start PSO (MSPSO) and Velocity Turbulent PSO
(VTPSO) to compare their performances. To compare with other algorithms,
the approach has the following differences:

– Our approach does not make a perturbation on the positions of the particles
directly, while it takes a minimum velocity threshold to limit the particles’
velocities. To do so, it avoids how to decide which one position should be
made a perturbation. In fact, it is very difficult to decide which one particle’s
position need a perturbation during the particle swarm searching for the
QAP.

– In the proposed algorithm, the particle is not on the run incessantly with
a high velocity, which is larger than the minimum velocity, from beginning
to end, even they are very close to the global optima, like them in VTPSO.
They have the opportunities with 10 times in a variable neighborhood search
loop to approach to the global optima with a low velocity, which is less than
a minimum velocity threshold.
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– The multi-start technique usually makes all the particles in the swarm not
only forget its own experience but also forget the experience of the swarm’s
experience. It only remembers the best fitness value so far achieved. In the
proposed approach, only the “lazy” particles are driven into a new neigh-
borhood to explore the better solutions while the whole swarm is alive and
iterated.

Algorithm 2 Variable Neighborhood Particle Swarm Optimization
01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. Set the flag of iterations without improvement Nohope = 0.
04. While (the end criterion is not met) do
05. t = t + 1;
06. Calculate the fitness value of each particle;
07. p∗ = argminn

i=1(f(p∗(t − 1)), f(p1(t)), f(p2(t)), · · · ,

f(pi(t)), · · · , f(pn(t)));
08. If p∗ is improved then Nohope = 0, else Nohope = Nohope + 1.
09. For i= 1 to n

10. p#
i (t) = argminn

i=1(f(p#
i (t − 1)), f(pi(t));

11. For j = 1 to d

12. If Nohope < 10 then
13. Update the j-th dimension value of pi and vi

13. according to Eqs.(6),(8),(7),(9);
14. else
15. Update the j-th dimension value of pi and vi

15. according to Eqs.(20),(19),(7),(9).
16. Next j

17. Next i

18. End While.

6 Convergence Analysis of VNPSO

For analyzing the convergence of the proposed algorithm, we first introduce the
definitions and lemmas [Guo and Tang 2001, He et al. 2005, Weisstein 2006], and
then theoretically prove that the proposed variable neighborhood particle swarm
algorithm converges with a probability 1 or strongly towards the global optimal.

Consider the problem (P ) as

(P ) =

{
minf(x)

x ∈ Ω = [−s, s]n
(21)

1319Liu H., Abraham A.: An Hybrid Fuzzy Variable Neighborhood Particle ...



where x = (x1, x2, · · · , xn)T . x∗ is the global optimal solution to the problem
(P ), let f∗ = f(x∗). Let

D0 = {x ∈ Ω|f(x) − f∗ < ε} (22)

D1 = Ω \ D0

for every ε > 0.
Assume that the i-th dimensional value of the particle’s velocity decreases

to a threshold vc, then the shaking strategy is activated, and a variable neigh-
borhood velocity is generated by Eq.(20). In rand(−1, 1)vmax/η, rand(−1, 1) is
a normal distributed random number within the interval [-1,1], and the scaling
factor η is a positive constant to control the domain of the particle’s oscillation
according to vmax. Therefore the variable neighborhood velocity v̂ belongs to
the normal distribution. If vmax = s, then v̂ ∼ [− s

η , s
η ]. During the iterated pro-

cedure from the time t to t + 1, let qij denote that x(t) ∈ Di and x(t + 1) ∈ Dj .
Accordingly the particles’ positions in the swarm could be classified into four
states: q00, q01, q10 and q01. Obviously q00 + q01 = 1, q10 + q11 = 1.

Definition 1 Convergence in terms of probability. Let ξn a sequence of
random variables, and ξ a random variable, and all of them are defined on the
same probability space. The sequence ξn converges with a probability of ξ if

lim
n→∞P (|ξn − ξ| < ε) = 1 (23)

for every ε > 0.

Definition 2 Convergence with a probability of 1. Let ξn a sequence of
random variables, and ξ a random variable, and all of them are defined on
the same probability space. The sequence ξn converges almost surely or almost
everywhere or with probability of 1 or strongly towards ξ if

P

(
lim

n→∞ ξn = ξ

)
= 1; (24)

or

P

( ∞⋂
n=1

⋃
k≥n

[|ξn − ξ| ≥ ε]
)

= 0 (25)

for every ε > 0.

Lemma3 Borel-Cantelli Lemma. Let {Ak}∞k=1 be a sequence of events oc-
curring with a certain probability distribution, and let A be the event consisting
of the occurrences of a finite number of events Ak for k = 1, 2, · · · . Then

P

( ∞⋂
n=1

⋃
k≥n

Ak

)
= 0 (26)
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if
∞∑

n=1

P (An) < ∞; (27)

P

( ∞⋂
n=1

⋃
k≥n

Ak

)
= 1 (28)

if the events are totally independent and
∞∑

n=1

P (An) = ∞. (29)

Lemma4 Particle State Transference. q01 = 0; q00 = 1; q11 ≤ c ∈ (0, 1)
and q10 ≥ 1 − c ∈ (0, 1).

Proof. In the proposed algorithm, the best solution is updated and saved during
the whole iterated procedure. So q01 = 0 and q00 = 1.

Let x̂ is the position with the best fitness among the swarm so far as the
time t, i.e. x̂ = p∗. As the definition in Eq. (22), ∃r > 0, when ‖x − x̂‖∞ ≤ r,
we have |f(x) − f∗| < ε. Denote Qx̂,r = {x ∈ Ω|‖x − x̂‖∞ ≤ r}. Accordingly

Qx̂,r ⊂ D0 (30)

Then,

P{(x + Δx) ∈ Qx̂,r} =
n∏

i=1

P{|xi + Δxi − x̂i| ≤ r} (31)

=
n∏

i=1

P{x̂i − xi − r ≤ Δxi ≤ x̂i − xi + r}

where xi, Δxi and x̂i are the i-th dimensional values of x, Δx and x̂, respectively.
Moreover, v̂ ∼ [− s

η , s
η ], so that

P ((x + Δx) ∈ Qx̂,r) =
n∏

i=1

∫ x̂i−xi+r

x̂i−xi−r

η

2
√

2πs
e−

η2y2

2s2 dy (32)

Denote P1(x) = P{(x+ Δx) ∈ Qx̂,r} and C is the convex closure of level set for
the initial particle swarm. According to Eq. (32), 0 < P1(x) < 1 (x ∈ C). Again,
since C is a bounded closed set, so ∃ŷ ∈ C,

P1(ŷ) = min
x∈C

P1(x), 0 < P1(ŷ) < 1. (33)

Considering synthetically Eqs. (30) and (33), so that

q10 ≥ P1(x) ≥ P1(ŷ) (34)
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Let c = 1 − P1(ŷ), thus,

q11 = 1 − q10 ≤ 1 − P1(ŷ) = c (0 < c < 1) (35)

and
q10 ≥ 1 − c ∈ (0, 1) (36)

Theorem 5. Assume that the VNPSO algorithm provides position series pi(t)
(i = 1, 2, · · · , n) at time t by the iterated procedure. p∗ is the best position among
the swarm explored so far, i.e.

p∗(t) = arg min
1≤i≤n

(f(p∗(t − 1)), f(pi(t))) (37)

Then,

P

(
lim

t→∞ f(p∗(t)) = f∗
)

= 1 (38)

Proof. For ∀ε > 0, let pk = P{|f(p∗(k)) − f∗| ≥ ε}, then

pk =

{
0 if ∃T ∈ {1, 2, · · · , k}, p∗(T ) ∈ D0

p̄k if p∗(t) /∈ D0, t = 1, 2, · · · , k
(39)

According to Lemma 4,

p̄k = P{p∗(t) /∈ D0, t = 1, 2, · · · , k} = qk
11 ≤ ck. (40)

Hence,
∞∑

k=1

pk ≤
∞∑

k=1

ck =
c

1 − c
< ∞. (41)

According to Lemma 3,

P

( ∞⋂
t=1

⋃
k≥t

|f(p∗(k)) − f∗| ≥ ε

)
= 0 (42)

As defined in Definition 2, the sequence f(p∗(t)) converges almost surely or
almost everywhere or with probability 1 or strongly towards f∗. The theorem is
proven.

7 Experiments to Illustrate Algorithm Performance

In our experiments, Multi-Start PSO (MSPSO), Velocity Turbulent PSO (VTP-
SO), Multi-start Genetic Algorithm (MSGA) and Multi-start Ant Colony Opti-
mization (MSACO) was used to compare the performance with Variable Neigh-
borhood PSO (VNPSO). The GA and ACO algorithms share many similar-
ities, which are also inspired from the nature like the PSO. GA mimic an
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evolutionary natural selection process. Generations of solutions are evaluated
according to a fitness value and only those candidates with high fitness val-
ues are used to create further solutions via crossover and mutation procedures
[Abraham et al. 2006c]. ACO deals with artificial systems that is inspired from
the foraging behavior of real ants, which are used to solve discrete optimization
problems [Dorigo and Stützle 2004]. The main idea is the indirect communica-
tion between the ants by means of chemical pheromone trials, which enables
them to find short paths between their nest and food. It is implemented as a
team of intelligent agents which simulate the ants behavior, walking around the
graph representing the problem to solve using mechanisms of cooperation and
adaptation. PSO is a stochastic search technique inspired by social behavior of
bird flocking or fish schooling. All of them are valid and efficient methods in
numeric programming and have been employed in various fields due to their
strong convergence properties. Specific parameter settings for the algorithms
are described in Table 1. We consider the instances from Taillard’s datasets1

and QAPlib2. Each experiment (for each algorithm) was repeated 5 times with
different random seeds. Each trial had a fixed number of 50 ∗ n ∗ n iterations (n
is the dimension of the problem). If the value 50∗n∗n is larger than 2∗ 104, the
maximum iteration was set to 2∗104. The average costs were calculated from the
5 different trials. Usually the main emphasis will be to generate the assignment
solutions at a minimal amount of time. So the completion time for 5 trials were
used as one of the criteria to improve their performance.

In order to closely track the performance of our algorithms, we tested the
problem, tai12a. The tai12a is a QAP instance with 12 facilities on 12 locations.
Its united matrix DF of the distance and flow is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 10 11 12
1 0 21 95 82 56 41 6 25 10 4 63 6
2 27 0 44 40 75 79 0 89 35 9 1 85
3 85 80 0 84 12 0 26 91 11 35 82 26
4 2 58 3 0 69 56 86 45 91 59 18 76
5 1 21 48 74 0 39 18 57 36 61 36 21
6 15 76 29 45 77 0 71 11 29 82 82 6
7 11 72 90 65 36 91 0 71 8 77 74 30
8 35 44 66 40 53 13 87 0 89 76 76 40
9 11 85 41 54 37 29 67 10 0 93 56 1
10 20 94 15 83 26 11 94 99 99 0 50 4
11 21 90 83 14 87 77 79 56 60 56 0 36
12 61 51 96 71 76 32 2 70 4 2 60 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 1 illustrates the performance of the five algorithms for tai12a. The results
1http://ina2.eivd.ch/collaborateurs/etd/
2http://www.opt.math.tu-graz.ac.at/qaplib/
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Table 1: Parameter settings for the algorithms.

Algorithm Parameter name Parameter value
size of the population 10

GA Probability of crossover 0.8
Probability of mutation 0.07
Number of ants 10
Weight of pheromone trail α 1

ACO Weight of heuristic information β 5
Pheromone evaporation parameter ρ 0.8
Constant for pheromone updating Q 10
Swarm size 10
Self-recognition coefficient c1 1.49PSOs
Social coefficient c2 1.49
Inertia weight w 0.9 → 0.1

of 5 MSGA runs were {249048, 252020, 244784, 249448, 252014}, with an average
value of 249460, and assigning time of 897.8910. The results of 5 MSACO runs
were {250788, 247440, 251754, 252826, 255902}, with an average value of 251742,
and assigning time of 1362.0. The results of 5 MSPSO runs were {250394, 239412,
247486, 246084, 234596}, with an average value of 243590, and assigning time of
811.3750. The results of 5 VTPSO runs were {236822, 242412, 245510, 249176,
241624}, with an average value of 243110, and assigning time of 898.9220. The
results of 5 VNPSO runs were {233040, 235704, 235776, 244316, 248150}, with
an average value of 239400, and assigning time of 836.3750. As depicted by
these results and those results in [Liu et al. in press b], the ACO and MSACO is
effective algorithms for small scale problems, while VNPSO usually had better
averages for a bigger problem sizes. Although the results of MSACO are not very
good than other algorithms, its robustness is the best one among the considered
algorithms. MSPSO usually spent the lowest time to assign the facilities on the
locations, while MSACO spent the longest time to do that. MSGA does not
provide the satisfied results, but it might be possible to achieve better solutions
with a larger size of the population. This would also result in a longer assigning
time.

8 Conclusions

Particle swarm optimization algorithm has exhibited good performance across a
wide range of real world applications but not much work has been reported of
its usage to solve the class of quadratic assignment problems. Initial difficulty
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Figure 1: Performance for tai12a

consists of how to map the problem solution to the particle space. In this paper,
we extend the representations of the position and velocity of the particles in
PSO from the real vectors to fuzzy matrices, through which we accomplished
the mapping between the quadratic assignment problem and the particle. We ap-
plied the new mapping method to design a hybrid fuzzy scheme, called as variable
neighborhood fuzzy particle swarm algorithm (VNPSO), based on discrete par-
ticle swarm optimization and variable neighborhood search to achieve the global
optimum for the quadratic assignment problems. The proposed VNPSO algo-
rithm is illustrated theoretically that it converges with a probability of 1 towards
the global optimum. We evaluated the performance of our proposed approach
and compared it with Multi-Start PSO, Velocity Turbulent PSO, Multi-start
Genetic Algorithm and Multi-start Ant Colony Optimization. Empirical results
illustrated that the proposed approach was an effective approach to solve the
quadratic assignment problems.
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imental Study for the Quadratic Assignment Problem”; Proceedings of the Fifth In-
ternational Workshop on Ant Colony Optimization and Swarm Intelligence, ANTS
2006, Lect. Notes Comp. Sci., 4150, (2006), 179-190

[Wikipedia 2006] Wikipedia:“NP-hard”; From Wikipedia – The Free Encyclopedia
Web Resource, http://en.wikipedia.org/wiki/NP-hard.

[Yip and Pao 1994] Yip P. P. C., Pao Y.: “A Guided Evolutionary Simulated An-
nealing Approach to the Quadratic Assignment Problem”; IEEE Transaction on
Systems, Man, and Cybernetics, 24, 9(1994), 1383-1387

[Yu and Sarker 2003] Yu J., Sarker B. R.: “Directional Decomposition Heuristic for a
Linear Machine-cell Location Problem”; European Journal of Operational Research,
149, 1 (2003), 142-184

[Zhang et al. 2005] Zhang C., Lin Z., Lin Z.: “Variable Neighborhood Search with Per-
mutation Distance for QAP”; Preceedings of the Ninth International Conference on
Knowledge-Based Intelligent Information and Engineering Systems, KES 2005, Lect.
Notes Comp. Sci., 3684, 81-88

1331Liu H., Abraham A.: An Hybrid Fuzzy Variable Neighborhood Particle ...


