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Abstract. Breast cancer is one of the major tumor related cause of
death in women. Various artificial intelligence techniques have been used
to improve the diagnoses procedures and to aid the physician’s efforts.
In this paper we summarize our preliminary study to detect breast can-
cer using a Flexible Neural Tree (FNT), Neural Network (NN), Wavelet
Neural Network (WNN) and their ensemble combination. For the FNT
model, a tree-structure based evolutionary algorithm and the Particle
Swarm Optimization (PSO) are used to find an optimal FNT. For the
NN and WNN, the PSO is employed to optimize the free parameters.
The performance of each approach is evaluated using the breast cancer
data set. Simulation results show that the obtained FNT model has a
fewer number of variables with reduced number of input features and
without significant reduction in the detection accuracy. The overall ac-
curacy could be improved by using an ensemble approach by a voting
method.

1 Introduction

Breast cancer is the most common cancer in women in many countries. Various
artificial intelligence techniques have been used to improve the diagnoses proce-
dures and to aid the physician’s efforts [1][2][3][4]. Screening mammography is
the best tool available for detecting cancerous lesions before clinical symptoms
appear [5].

In this paper we evaluate the performance of a Flexible Neural Tree (FNT),
Neural Network (NN), Wavelet Neural Network (WNN) and an ensemble method
to detect breast-cancer. For FNT model, a tree-structure based evolutionary al-
gorithm and the Particle Swarm Optimization (PSO) are used to find an optimal
FNT. For the NN and WNN, the PSO is employed to optimize the free param-
eters. Simulation studies shown the effectiveness of the proposed method.



2 The PSO Algorithm

The PSO [6] conducts searches using a population of particles which correspond
to individuals in an evolutionary algorithm (EA). A population of particles is
randomly generated initially. Each particle represents a potential solution and
has a position represented by a position vector xi. A swarm of particles moves
through the problem space, with the moving velocity of each particle represented
by a velocity vector vi. At each time step, a function fi representing a quality
measure is calculated by using xi as input. Each particle keeps track of its own
best position, which is associated with the best fitness it has achieved so far in
a vector pi. Furthermore, the best position among all the particles obtained so
far in the population is kept track of as pg. In addition to this global version,
another version of PSO keeps track of the best position among all the topological
neighbors of a particle.

At each time step t, by using the individual best position, pi(t), and the
global best position, pg(t), a new velocity for particle i is updated by

vi(t + 1) = vi(t) + c1φ1(pi(t)− xi(t)) + c2φ2(pg(t)− xi(t)) (1)

where c1 and c2 are positive constant and φ1 and φ2 are uniformly distributed
random number in [0,1]. The term vi is limited to the range of ±vmax. If the
velocity violates this limit, it is set to its proper limit. Changing velocity this
way enables the particle i to search around its individual best position, pi, and
global best position, pg. Based on the updated velocities, each particle changes
its position according to the following equation:

xi(t + 1) = xi(t) + vi(t + 1). (2)

In this research, the PSO is employed to optimize the parameter vectors of
FNT, NN and WNN.

3 Breast Cancer Detection Using FNT, NN and WNN

3.1 Flexible Neural Tree Classifier

In this research, a tree-structural based encoding method with specific instruc-
tion set is selected for representing a FNT model [7][8].

Flexible Neuron Instructor and FNT Model The function set F and
terminal instruction set T used for generating a FNT model are described as
follows:

S = F
⋃

T = {+2,+3, . . . ,+N}
⋃
{x1, . . . , xn}, (3)

where +i(i = 2, 3, . . . , N) denote non-leaf nodes’ instructions and taking i argu-
ments. x1,x2,. . .,xn are leaf nodes’ instructions and taking no other arguments.



The output of a non-leaf node is calculated as a flexible neuron model (see
Fig.1). From this point of view, the instruction +i is also called a flexible neuron
operator with i inputs. In the creation process of neural tree, if a nonterminal
instruction, i.e., +i(i = 2, 3, 4, . . . , N) is selected, i real values are randomly gen-
erated and used for representing the connection strength between the node +i

and its children. In addition, two adjustable parameters ai and bi are randomly
created as flexible activation function parameters. Some examples of flexible
activation functions are shown in Table 1.

For developing the FNT classifier, the following flexible activation function
is used.

f(ai, bi, x) = e
−(

x−ai
bi

)2 (4)

The output of a flexible neuron +n can be calculated as follows. The total
excitation of +n is

netn =
n∑

j=1

wj ∗ xj (5)

where xj(j = 1, 2, . . . , n) are the inputs to node +n. The output of the node +n

is then calculated by

outn = f(an, bn, netn) = e−( netn−an
bn )2 . (6)

A typical flexible neuron operator and a neural tree model are illustrated in
Figure 1. The overall output of flexible neural tree can be computed from left to
right by the depth-first method, recursively.

The Optimization of FNT Model The optimization of FNT includes the
tree-structure and parameter optimization. Finding an optimal or near-optimal
neural tree is formulated as a product of evolution. A number of neural tree
variation operators are developed as follows:
Mutation Four different mutation operators were employed to generate off-
spring from the parents.These mutation operators are as follows:

(1) Changing one terminal node: randomly select one terminal node in the neural
tree and replace it with another terminal node;

(2) Changing all the terminal nodes: select each and every terminal node in the
neural tree and replace it with another terminal node;

(3) Growing: select a random leaf in hidden layer of the neural tree and replace
it with a newly generated subtree.

Table 1. The activation functions

Gaussian function f(x) = exp(− (x−a)2

b2
)

Flexible unipolar sigmoid function f(x, a) = 2|a|
1+e−2|a|x

Flexible bipolar sigmoid function f(x, a) = 1−e−2xa

a(1+e−2xa)
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Fig. 1. A flexible neuron operator (left), and a typical representation of the FNT
with function instruction set F = {+2, +3, +4, +5, +6}, and terminal instruction set
T = {x1, x2, x3} (right)

(4) Pruning: randomly select a function node in the neural tree and replace it
with a terminal node.

The neural tree operators were applied to each of the parents to generate an
offspring using the following steps: (a)A Poission random number N , with mean
λ, was generated. (b)N random mutation operators were uniformly selected with
replacement from above four mutation operator set. (c)These N mutation op-
erators were applied in sequence one after the other to the parents to get the
offsprings.
Crossover Select two neural trees randomly and select one nonterminal node
in the hidden layer for each neural tree randomly, and then swap the selected
subtree. The crossover operator is implemented with a pre-defined a probability
0.3 in this study.
Selection Evolutionary programming (EP) style tournament selection was ap-
plied to select the parents for the next generation. Pairwise comparison is con-
ducted for the union of µ parents and µ offsprings. For each individual, q op-
ponents are chosen uniformly at random from all the parents and offspring. For
each comparison, if the individual’s fitness is no smaller than the opponent’s, it
receives a selection. Select µ individuals out of parents and offsprings, that have
most wins to form the next generation. This is repeated for each generation until
a predefined number of generations or when the best structure is found.

Parameter Optimization by PSO Parameter optimization is achieved by
the PSO algorithm as described in Section 2. In this stage, the architecture of
FNT model is fixed, and it is the best tree developed during the end of run of
the structure search. The parameters (weights and flexible activation function
parameters) encoded in the best tree formulate a particle. The PSO algorithm
works as follows:

(a) Initial population is generated randomly. The learning parameters c1 and c2

in PSO should be assigned in advance.
(b) The objective function value is calculated for each particle.



(c) Modification of search point. The current search point of each particle is
changed using Eqn.(2) and Eqn.(1).

(d) If maximum number of generations is reached or no better parameter vector
is found for a significantly long time (100 steps), then stop, otherwise goto
step (b).

3.2 NN Classifier

A neural network classifier trained by PSO algorithm with flexible bipolar sig-
moid activation functions at hidden layer were constructed for the breast-cancer
data set. Before describing the details of the algorithm for training NN classifier,
the issue of coding is presented. Coding concerns the way the weights and the
flexible activation function parameters of NN are represented by individuals or
particles. A float point coding scheme is adopted here. For NN coding, suppose
there are M nodes in hidden layer and one node in output layer and n input
variables, then the number of total weights is n ∗ M + M ∗ 1, the number of
thresholds is M + 1 and the number of flexible activation function parameters
is M + 1, therefore the total number of free parameters in a NN to be coded is
n∗M +M +2(M +1). These parameters are coded into an individual or particle
orderly.

The simple loop of the proposed training algorithm for neural network is as
follows.

S1 Initialization. Initial population is generated randomly. The learning param-
eters c1 and c2 in PSO should be assigned in advance.

S2 Evaluation. The objective function value is calculated for each particle.
S3 Modification of search point. The current search point of each particle is

changed using Eqn.(2) and Eqn.(1).
S4 if maximum number of generations is reached or no better parameter vector

is found for a significantly long time (100 steps), then stop, otherwise goto
step S2;

3.3 WNN Classifier

In terms of wavelet transformation theory, wavelets in the following form

Ψ = {Ψi = |ai|− 1
2 ψ(

x− bi

ai
) : ai, bi ∈ R, i ∈ Z} (7)

x = (x1, x2, . . . , xn)
ai = (ai1, ai2, . . . , ain)
bi = (bi1, bi2, . . . , bin)

are a family of functions generated from one single function ψ(x) by the operation
of dilation and translation. ψ(x), which is localized in both the time space and
the frequency space, is called a mother wavelet and the parameters ai and bi are
named the scale and translation parameters, respectively.



In the standard form of wavelet neural network, the output of a WNN is
given by

f(x) =
M∑

i=1

ωiΨi(x) =
M∑

i=1

ωi|ai|− 1
2 ψ(

x− bi

ai
) (8)

where ψi is the wavelet activation function of ith unit of the hidden layer and
ωi is the weight connecting the ith unit of the hidden layer to the output layer
unit. Note that for the n-dimensional input space, the multivariate wavelet ba-
sis function can be calculated by the tensor product of n single wavelet basis
functions as follows

ψ(x) =
n∏

i=1

ψ(xi). (9)

Before describing details of the PSO algorithm for training WNN, the issue
of coding is presented. Coding concerns the way the weights, dilation and trans-
lation parameters of WNN are represented by individuals or particles. A float
point coding scheme is adopted here. For WNN coding, suppose there are M
nodes in hidden layer and n input variables, then the total number of parameters
to be coded is (2n + 1)M . The coding of a WNN into an individual or particle
is as follows:

|a11b11 . . . a1nb1nω1|a21b21 . . . a2nb2nω2| . . . |an1bn1 . . . annbnnωn|
The simple loop of the proposed training algorithm for wavelet neural net-

work is as follows.

S1 Initialization. Initial population is generated randomly. The learning param-
eters, such as c1, c2 in PSO should be assigned in advance.

S2 Parameter optimization with PSO algorithm;
S3 if maximum number of generations is reached or no better parameter vector

is found for a significantly long time (100 steps), then go to step S4; otherwise
goto step S2;

S4 Parameter optimization with gradient descent algorithm;
S5 If the satisfactory solution is found then stop; otherwise goto step S4.

3.4 Ensemble Classifier

A ensemble classifier of FNT, NN and WNN is also constructed in order to test
the performance of the mixture of different classification models. A simple voting
method is employed in this research.

4 Results

As a preliminary study, we made use of the Wisconsin breast cancer data set
from the UCI machine-learning database repository [9]. This data set has 32



Table 2. Comparative results of the four classification methods for the detection of
breast cancer

Cancer type FNT(%) NN(%) WNN(%) Ensemble(%)

Benign 93.31 94.01 94.37 95.42

Malignant 93.45 95.42 92.96 96.14

Table 3. The important features selected by the FNT algorithm

Cancer type Important variables

Benign x12,x14,x15,x16,x17,x18,x23,x24,x26,x27,x29

Malignant x1,x5,x6,x7,x11,x12,x16,x17,x20,x21,x29

attributes (30 real valued input features) and 569 instances of which 357 are of
benign and 212 are of malignant type. We randomly divided the training and
test data sets. The first 285 data is used for training and the remaining 284 data
is used for testing the performance of the different models.

All the models were trained and tested with the same set of data. As the
data set has two different classes we performed a 2-class binary classification.
The classification results for testing data set are shown in Table 2. It should
be noted that the obtained FNT classifier has smaller size and reduced features
and without a significant reduce in the accuracy. The important features for
constructing the FNT models are shown in Table 3. In general, the ensemble
of FNT, NN and WNN shows the best classification rate. A comparison of im-
plementation time of the three classifier models are shown in Table 4. Receiver
Operating Characteristics (ROC) analysis of the FNT, NN, WNN and their
ensemble model is shown in Table 5.

Table 4. Comparison of training/testing time for FNT, NN and WNN classifiers

Model Training time (minute) Test time (ms)

Benign Malignant Benign Malignant

FNT 54 58 15 42

NN 35 39 31 26

WNN 52 55 45 37

5 Conclusion

In this paper, we presented some advanced artificial intelligence techniques for
the detection of breast cancer. As depicted in Table 2, the preliminary results



Table 5. Comparison of false positive rate (fp) and true positive rate (tp) for FNT,
NN, WNN and ensemble classifiers

Cancer FNT NN WNN Ensemble

Type fp(%) tp(%) fp(%) tp(%) fp(%) tp(%) fp(%) tp(%)

Benign 3.88 91.71 4.85 93.37 6.8 98.34 4.85 95.58

Malignant 2.76 86.41 4.97 96.12 9.4 97.09 3.88 93.21

are very encouraging. The best accuracy was offered by the ensemble method
followed by the wavelet neural network for detecting benign types and PSO
trained neural network for detecting the malignant type of cancer. An important
advantage of the FNT model is the ability to reduce the number of input variables
as presented in Table 3. ROC analysis (Table 5) illustrates that wavelet neural
network has the highest false positive rate and the FNT model has the lowest
false positive rates for detecting benign and malignant cancer. The time required
to construct these models are not very much and hope these tools would assist the
physician’s effort to improve the currently available automated ways to diagnose
breast cancer.
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