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Abstract-Based on the study of developments in many fields 
of computer vision, a novel computer vision navigation system for 
mobile tracking robot is presented. Three irrelevant technologies, 
pattern recognition, binocular vision and motion estimation, make 
up of the basic technologies of our robot. The non· negative matrix 
factorization (NMF) algorithm is applied to detect the target. 
The application method of NMF in our robot is demonstrated. 
Interesting observations on distance measurement and motion 
capture are discussed in detail. The reasons resulting in error 
of distance measurement are analyzed. According to the models 
and formulas of distance measurement error, the error type 
could be found, which is helpful to decrease the distance error. 
Based on the diamond search (DS) technology applied in MPEG· 
4, an improved DS algorithm is developed to meet the special 
requirement of mobile tracking robot. 

Index Terms-mobile robot, navigation, computer vision, non· 
negative matrix factorization, binocular vision, motion estimation. 

I. INTRODUCTION 

A main aim of robotics research is to gain knowledge about 

the nature of intelligence, to make computers more useful to 

human. Creating more intelligent computers will make robots 

more useful to people. Mobile tracking robot can offer some 

attractive home services closely related to our life. It will be 

the most useful partner in our life in future. In our project, we 

try to develop a kind of mass producible, low-cost autonomous 

mobile tracking robot. 

Indubitably, vision navigation system is one of the most 

important systems in mobile robot. Computer vision for mobile 

robot navigation became a hot subject since the end of 1970s. 

It has achieved great progress in the field of computer vision 

in recent several decades. Many interesting technologies were 

applied in this field continuously. Most research work on 

mobile robot vision navigation is focused on map building, 

self-localization, path planning, and obstacle avoidance. 

G. N. DeSouza et al. [1] investigated the developments of 

twenty years in the field of vision for mobile robot navigation. 

The developments can be divided into indoor navigation and 

outdoor navigation. 

For the indoor navigation, it includes three broad groups: 

map-based, map-building-based and mapless navigation. Map­

based navigation systems depend on user-created geometric 

models or topological maps of the environment. Map-building­

based navigation systems use sensors to construct their own 
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geometric or topological models of the environment and then 

use these models for navigation. Mapless navigation systems 

use no explicit representation at all about the space in which 

navigation is to take place, but other resort to recognize 

objects found in the environment or to track those objects by 

generating motions based on visual observations. The problem 

of robotic mapping is that of acquiring a spatial model of 

a robot's environment. It is a process for robot to perceive 

the outside world. Sebastian Thrun [2] surveyed major algo­

rithms of robotic mapping, including Kalman filter techniques, 

approaches based on Dempster's expectation maximization 

algorithm, occupancy grid techniques, and so on. 

For the outdoor navigation, which usually involves obstacle­

avoidance, land-mark detection, map-building or updating, and 

position estimation, it can be divided into structured and 

unstructured environments according to the level of structure of 

the environment. In general, outdoor navigation in structured 

environments requires some sort of road-following; while out­

door navigation in unstructured environments, which doesn't 

require regular properties used to be perceived or tracked for 

navigation, can make use of at most a generic characterization 

of the possible obstacles in the environment. 

Each sort of those methods mentioned above has its own 

technical characteristics. The central computations involved 

in map-based navigation can be divided into four steps: ac­

quire sensory information, detect landmarks, establish matches 

between observation and expectation and calculate position. 

The map-building-based approaches try to explore the en­

vironment and build an internal representation of it for the 

robot, such as 3D coordinates, occupancy grid or metric­

topological representation, etc. Mapless navigation does not 

need map, in which the robot motions are determined by 

observing and extracting relevant information of environment 

such as walls, desks, doorways, etc. Optical flow-based and 

appearance-based are two prominent techniques used in maples 

navigation. Outdoor navigation is often executed by cars or 

wheeled vehicles. The road-following for outdoor navigation 

in structured environments means an ability to recognize the 

lines that separate the lanes or separate the road from the berm, 

the texture of the road surface, and the adjoining surfaces, etc. 

In unstructured outdoor navigation, those techniques include 

external camera observation, far-point landmark triangulation, 
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global positioning, etc. 

Human eyes and vision navigation system take on similar 

fundamentality in human and mobile robot, respectively. From 

the perspective of bionics, the researches on human eyes 

are referential and significant to the development of robotic 

vision system. With the important functions, such as binocular 

parallax, motion parallax, accommodation and convergence, 

human eyes can extract depth cue out of scene, which finally 

results in the ability of depth perception. Similarly, if the 

robotic vision system performs similar functions to those of 

human eyes, the robot will be more intelligent. 

By analyzing those functions of human eyes more carefully, 

it can be found that there are three processes which are primary 

and essential to robot: target recognition, distance estimation 

and motion capture. Target recognition, or object recognition, 

can tell robot what the target is. Distance estimation can 

describe the environment; tell robot where the target is and 

where robot itself is, which actually means some certain kind 

of stereo vision capability. Motion capture can tell robot how to 

follow the target. Based on these three primary processes, the 

mobile tracking robot can possess some important capabilities. 

In this paper, we present an approach of computer vision 

navigation for mobile tracking robot. We try to use cheap 

cameras and simple algorithm to realize the functions needed 

by mobile tracking robot. The main process is summarized as 

follows. 

Step 1: Target Recognition. The features of target are 

abstracted from images taken by the vision system of the 

mobile robot. In this step, the robot can perceive the target. 

Step 2: Distance Estimation. According to the images taken 

by eyes of the mobile robot vision system, the distance of target 

can be gotten depending on vision measurement technology. 

Of course, if the map is necessary for the robot to select its 

route or avoid obstacle, the robot can redraw the scene as a 

map. Therefore, the robot can know the position of target and 

get the environment information in this step. 

Step 3: Motion Capture. When the target is moving, the 

robot can compute the motion vector of target using search 

algorithm. According to the target motion vector, the robot 

can control its drive system to follow the target. Therefore, 

the robot can know how to track the target. 

The rest of this paper is organized as follows. Section 2 

discusses the application of non-negative matrix factorization 

in robot navigation. The data processing and an example are 

demonstrated in this section. Section 3 and section 4 analyze 

the distance estimation and the motion estimation, respectively. 

Section 5 gives a model to validate the approach presented in 

this paper, concludes the works of this paper, also discusses 

some future work. 

II. TARGET RECOGNITION 

In this step, the essence of target recognition is the mecha­

nism of computer to cognise object. Undoubtedly, the research 

on mechanism of the human brain to perceive the world is 

helpful to resolve our problem. 

Some researchers found psychological and physiological 

evidence for parts-based representations in the brain. Conse­

quently, certain computational theories of object recognition 

were presented based on such representations. According to 

the parts-based representations, the objects can be represented 

as 

Objecti 

where 

bil x Parh + bi2 x Part2 + ... 

+bij x Partj + ... 

if part j is present in object i 
if part j is absent from object i. 

Similarly, the object of image can be represented as 

bil x Featurel + bi2 x Feature2 + ... 

+bij x Featurej + ... 

where bij ::::: 0 are the participation weight of feature j in 

image i. Because each pixel is represented by its light intensity 

measured by a non-negative value, the participation weight bij 
is inevitably a non-negative number. 

The parts-based representations offer an approach to recon­

struct or recognize the world. Object can be cognised based on 

parts perceived by human brain, and image can be recognized 

based on features abstracted by computer. Consequently, the 

hard core of our problem becomes to find a method by which 

computer abstracts features, or parts, from images. 

D. D. Lee and H. S. Seung [3] demonstrated an algorithm 

for non-negative matrix factorization (NMF) that could learn 

parts of objects, such as parts of faces and semantic features 

of text. In their opinion, the image database is regarded as an 

nxm matrix V, each column of which contains n non-negative 

pixel values of one of the m facial images. Then the NMF 

construct approximate factorizations of the form V � W H, 
or 

r 

ViI' = (WH)il' = L WiaHal' 
a=l 

The r columns of Ware called basis images. Each column of 

H is called an encoding and is in one-to-one correspondence 

with a face in V. An encoding consists of the coefficients by 

which a face is represented with a linear combination of basis 

images. The dimensions of the matrix factors Wand H are 

n x rand r x m, respectively. The rank r of the factorization 

is generally chosen so that (n+m) x r < nm, and the product 

W H can be regarded as a compressed form of the data in V. 
To find an approximate factorization V � W H, cost 

function shall be defined firstly, which quantify the quality 

of the approximate. Euclidean distance and Kullback-Leibler 

divergence, or relative entropy, are two useful measures. The 

cost functions based on them can be expressed as follows, 

respectively. 

IIV - WHI1
2 = L [Vij - (WH)ij]

2 

ij 
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D(vIIWH) = 2:: [VijlOg (:;)ij 
- Vij + (WH)ij ] 

'J 

The Euclidean distance II V -W HII is non-increasing under 

the update rules 

(WTV)a/-L Ha/-L r- Ha/-L 
(WTW H)a/-L 

(VHT)ia 
Wia r- Wia 

(W H HT)ia 

The divergence D(VIIW H) is non-increasing under the 

update rules 

The Euclidean distance and divergence are invariant under 

these respective updates if and only if Wand H are at a 

stationary point of the distance or divergence, respectively. 

D. D. Lee and H. S. Seung also gave two examples of 

NMF application on facial images and semantic analysis. In 

the facial image application, the grey intensities of each image 

are first linearly scaled so that the pixel mean and standard 

deviation equal 0.25, and then clip to the range [0, 1]. NMF is 

performed with the iterative algorithm, starting with random 

initial conditions for W and H. The algorithm converges 

usually in 50 iterations in their example. In fact, they have 

proved the convergence [4] of the NMF update rules. 

According to the algorithm and application on facial im­

ages, it is obvious that the NMF can be applied to recognize the 

object in our problem, no matter it is face, back or something 

else. Because the NMF has the ability to learn the parts-based 

features of object, the robot can recognize target if only it has 

this kind of ability. 

A feasible process of target recognition for our mobile 

tracking robot may be is 

Step 1: The robot captures the image of target multi­

angularly, such as from head to toe, from the front to the back, 

from far to near, etc. 

Step 2: Linear scale all these images. Construct matrix V 
by converting each image to a column vector and combining 

them. 

Step 3: Process the matrix V by implementing NMF algo­

rithm, and then get the basis images Wand encoding matrix 

H. 
Step 4: For a new image matrix U that includes the parts of 

target features or some columns of matrix W, new encoding 

matrix J can be extracted by W-1U. 

Step 5: Find the part in matrix J that is with the shortest 

distance to another part in matrix H. This part in Matrix J 
contains the position information of target in matrix U. It 

means we have found the target in the new image. 

Fig. 1 shows briefly the main procedure of data processing. 

Firstly, the color images are converted to grey images, see 

(a) 

(b) 

Fig. I. Data processing by using NMF. (a) hand-aligned grey images, each 
of them corresponds to a column of matrix V; (b) the parts-based images 
corresponding to basis matrix W. 

Fig. lea). To facilitate comparison with the matrix V, the nine 

frontal views are aligned by hand, each of them corresponds 

to a column of matrix V. Fig. I(b) shows the parts-based faces 

transformed by the basis image matrix W. 

In the NMF algorithm, the rank r is an important parameter 

that decides the dimension of characteristic subspace. The 

determining of r shall be helpful to reduce the dimension of 

image matrix, but also to express target features effectively. 

However, there is no good way to determine it nowadays. 

In [5], N.D. Ho indicated that the problem of determining 

the non-negative rank can be solved in finite time by looping 

through r = 1, 2, ... , min(n, m) because the upper bound of 

the non-negative rank is min(n, m). Additionally, N.D. Ho et 
al. [6] compared the convergence speed of different algorithms, 

which can be a reference to the determining of r value. 

III. MEASURE OF DISTANCE 

Binocular stereo triangulation, see Fig. 2(a), is a simple and 

effective approach in computational stereo [7]. It also can be 

regarded as a special case of two-view geometry [8]. Given 

the distance between aperture diaphragm OL and OR, called 

baseline B, and the focal length f of the cameras, object 

distance D may be computed by similar triangles as 

D = 
fB 

= K� 
Xl + Xr npixel 

(I) 

where Xl and Xr are the absolute horizontal distance between 

image point and the left and right image center respectively, K 
is constant, npixel is displacement of pixels. Indeed binocular 

stereo triangulation is outdated. But if used appropriately, it 

will be very effective. 

According to (1), the maximum estimated object distance 

depends on maximum focal length f, baseline B and minimum 

pixel displacement npixel. Obviously, the maximum value is 

Dmax = K fmaxBmax, where Dmax, fmax and Bmax are 
maximum value of D, f and B, respectively. 

It should be noticed that the lens model in Fig. 2(a) is 

pinhole model. The image of the object on the image plane 

is top-bottom inverted and left-right inverted. And camera can 

revise these inversions in real picture automatically. Finally, 

the point on image plane lying at lower left corner may lie 

at upper right corner in the real picture. Therefore, these 

automatic revisions should be considered in measuring the 

distance between image point and image center in the real 

picture. 
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Fig. 2. Three cases of object position in image plane: the object lies (a) 
between two centers, (b) at the left of the left camera center, and (c) at the 
right of the right camera center. 

As shown in Fig. 2(b) and (c), if the object lies at the left 

of left camera or right of right camera, the object distance D 
may be computed respectively as 

D = fB 
(2) 

xr - Xl 

D = fB 
(3) 

Xl - Xr 

In our experiment, we select two pan-tilt-zoom webcams as 

the cameras of the mobile robot vision navigation system. The 

webcams are very cheap. In practice, it is difficult to build 

ideal binocular stereo system with nonverged geometry. For 

example, as shown in Fig. 3(a) and (b), the two optical axes 

of left and right camera may not parallel, or the focal lengths 

of two cameras may not equal, which result in two kinds of 

errors. 

If the distance error is defined as the difference between 

real and measured distance, for the case shown in Fig. 3(a), 

the object distance error caused by unparallel optical axes, 

denoted as err D1, may computed as 

errD1 = f(B - ftano:) _ fB 
(4) 

Xl + Xr + f tan 0: Xl + Xr 

a 
� 

a. / ""--: 
OL lOR � � 

!:�! ... B 
(a) 

f 
• 

OL OR � � 

I I Xl I � �! I X,. ,'" 
(b) 

Fig. 3. Two cases causing error of distance estimation: (a) two optical axes 
are unparal\el, and (b) the focal lengths of two cameras are unequal. 

Similarly, for the case of Fig. 2(b) and (c), the object 

distance error caused by unparallel optical axes may computed 

respectively as 

f(B - ftano:) fB 
errD1 = - (5) 

Xr - Xl + 2ftano: Xr - Xl 

f(B - f tan 0:) fB 
errD1 = (6) 

Xl - Xr + 2f tan 0: xl -xr 
For the case shown in Fig. 3(b), the object distance error 

caused by unequal focal length, denoted as err D2, may 

computed as 

errD2 = fB fB 
Xl + fXr Xl +Xr 

f'fB fB 
(7) f'Xl + fXr Xl +Xr 

where l' is the unequal focal length of the right camera shown 

in 3(b). 

Similarly, for the case of Fig. 2(b) and (c), the object 

distance error caused by unequal focal length may computed 

respectively as 

f'fB fB 
errD2 = f f Xr - 'Xl Xr - Xl 

f'fB fB 
errD2 = f f Xl - 'Xr Xl - Xr 

(8) 

(9) 

According to (4), (5) and (6), the distance error caused by 

unparallel optical axes can be drawn, see Fig. 4. Obviously, 

when the object lies between two centers, the object distance 

error is less than that when the object lies aside. Similarly, 

according to (7), (8) and (9), the distance error caused by 

unequal focal length can be drawn, see Fig. 5. Obviously, when 

the object lies between two centers, the object distance error is 

less than that when the object lies aside. Therefore, it is better 
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Fig. 4. The object distance error caused by unparallel optical axes. Baseline 
is 8 cm, and reference focal length is 4 cm. 

to measure the object distance while the object lies between 

two centers. 

Based on the error analysis above, the unparallel optical 

axis and unequal focal length can be corrected. Fig. 6 shows 

the distance curves at different baseline after correction. 

Equation (1) shows that the estimation range of distance is 

directly proportional to f and B. If the robot wants to adjust 

the distance range, it just need to increase or decrease focal 

length f or baseline B. It is an effective way for the robot to 

observe the object at very far or very close distance. But the 

increase of f or B may also increase the object distance error, 

which is a matter of course, because the further the object, the 

larger the distance error. 

IV. MOTION CAP TURE 

If the robot can compute the object's motion vector from 

every frame taken by its eyes, it can know the object motion, 

and then can track it. An effective and popular method, called 

block-matching motion estimation, has been widely applied 

in various video coding standards, such as H.261, H.263, 

MPEG-l, MPEG-2 and MPEG-4, and in motion-compensated 

video coding technique. Many fast block-matching algorithms 

have been developed, for example, 2-D logarithmic search, 

three-step search, conjugate direction search, cross search, new 

three-step search, four-step search, block-based gradient de­

scent search, etc. These fast block-matching algorithms exploit 

different search patterns and search strategies for finding the 
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Fig. 5. The object distance error caused by unequal focal length. Baseline 
is 8 cm, and reference focal length is 4 cm. 
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Fig. 6. The distance curves at different baseline after correcting the errors. 

optimum motion vector with drastically reduced number of 

search points as compared with the full search algorithm that 

test all the candidate blocks within the search window. 

Shan Zhu and Kai Kuang Ma proposed a simple, robust 

and efficient fast block-matching motion estimation algorithm, 

called diamond search (DS) [9]. The DS algorithm employs 

two search patterns, called large diamond search pattern 

(LDSP) and small diamond search pattern (SDSP). We applied 

the DS algorithm to compute the object's motion vector in our 

experiment. 

In contrast, it is necessary to repeat briefly the DS algorithm 

firstly. After discussing it in detail, the improved DS algorithm 

used in mobile tracking robot will be introduced. 

The DS algorithm is summarized as follows, as shown in 
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Fig. 7. Search path example which leads to the motion vector (-4, -2) in five 
search steps-four times of LDSP and one time SDSP at the final step. There 
are 24 search points in total-taking nine, five, three, three, and four search 
points at each step, sequentially. 
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Fig. 8. Search path example which leads to the motion vector (-2, 0) in three 
search steps: once combination of LDSP and SDSP, once LDSP and once 
SDSP at the last step. There are 21 search points in total: taking thirteen, five 
and three search points at each step, sequentially. 

Fig. 7. 

Step 1: The initial LDSP is centered at the origin of the 

search window, and the 9 checking points of LDSP are tested. 

If the minimum block distortion (MBD) point calculated is 

located at the center position, go to Step 3; otherwise, go to 

Step 2. 

Step 2: The MBD point found in the previous search step 

is re-positioned as the center point to form a new LDSP. If the 

new MBD point obtained is located at the center position, go 

to Step 3; otherwise, recursively repeat this step. 

Step 3: Switch the search pattern from LDSP to SDSP. The 

MBD point found in this step is the final solution of the motion 

vector which points to the best matching block. 

Firstly, the DS algorithm computes every block's motion 

vector; however, for mobile robot, it just need to only compute 

the motion vector of interested one rather than every block. 

Secondly, the DS algorithm has perfect performance if the 

object moves to one of the 9 positions at LDSP in next frame; 

(a) the reference frame 

(b) the matched frame to compute motion vector 

Fig. 9. Two frames of a video. (a) is the reference frame, and (b) is the next 
frame. The motion vector is computed according to these adjacent frames. 
The black square is target. The circle one is disturbing object. Both of them 
are moved. 

but if the object moves outside of LDSP or to one of the 

five positions at SDSP in next frame, it cannot find the object 

any more. Considering what the robot track is human, general 

movement is forward or backward, and rarely very fast left or 

right, so the moving outside of LDSP in next frame could be 

neglected. At the same time, the initial search should include 

LDSP and SDSP. 

In our experiment, we found that the block size has impor­

tant effect to the search result. The perfect situation is that the 

search block has the same size to the object in image. If the 

block is greater than the object, search is not very good. 

Based on the discussion above, the improved DS algorithm 

could be summarized as follows, as shown in Fig. 8. 

Step 1: According on the object feature, set the block size 

equals to the object size. The initial search including LDSP 

and SDSP is centered at the origin of the search window, and 

the 13 checking points are tested. If the MBD point calculated 

is located at the center position, go to Step 3; otherwise, go 

to Step 2. 

Step 2: The MBD point found in the previous search step 

is re-positioned as the center point to form a new LDSP. If the 

new MBD point obtained is located at the center position, go 

to Step 3; otherwise, recursively repeat this step. 

Step 3: Switch the search pattern from LDSP to SDSP. The 

MBD point found in this step is the final solution of the motion 

vector which points to the best matching block. 

Fig. 9(a) and (b) are two frames of a video. It shows 

the movement of a circle and a square object. In fact, the 

square one is the target, the method presented in this paper can 

estimate the object's distance and compute its motion vector, 

see Fig. 10. 
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Fig. 10. The motion vector of square target. The upper left comer is the origin 
of image. The vector means motion vector that shows the target's displacement 
from start to end point. 

V. CONCLUSION 

An ease way to validate the approach of vision-based 

navigation system discussed in this paper is to connect we­

bcams with computer. After receiving data from webcams and 

calculating the target's distance and motion vector, computer 

send control parameters to robot. LEGO Mindstorms NXT is a 

good choice for the robot. It's not necessary to fix the webcams 

on LEGO robot in this verification model. The final purpose 

of this model is to control the left and right wheel of LEGO 

robot rotate correctly according to the movement of target. 

Fig. 11 shows the flow of the verification model. The 

webcams capture frames and send these data to computer, 

computer then recognizes target and calculates its distance and 

motion vector to control robot's speed and direction so as to 

follow the target. 

In sum, the vision-based system of computer vision nav­

igation for mobile tracking robot mentioned in this paper 

consists of three main parts called target recognition, distance 

measurement and motion capture, respectively. 

The NMF algorithm is applied in recognition part to per­

ceive target. Because NMF is a parts-based algorithm, it can 

recognize the target after learning the parts-based features. 

The NMF is an important development of the research on 

perception, which provides a feasible approach for machine 

to simulate the cognitive methods in human brain. However, 

NMF is not a perfect algorithm. For example, its localization 

performance of basis image is not satisfied; when it finds 

projecting basis vector to compress high dimensional data 

to low dimensional data, it ignores an important information 

that original data samples belong to different categories; also, 

there is no clear requirements of statistical relationship of the 

data after dimension reduction. Accordingly, many improved 

algorithms were developed, such as local non-negative matrix 

factorization (LNMF) [10], [11], sparseness non-negative ma­

trix factorization [12], [13], [14], fisher non-negative matrix 

factorization (FNMF) [15], etc. It's necessary to optimize the 

NMF according to the requirements of mobile tracking robot; 

to find a method to determine the optimized rank r; to simplify 

the recognition steps. 

The reasons resulting in object distance error and its cor­

rection methods are discussed in detail. When the object lies 

between two optical axes, the distance error is less than that 

q Computer 

I Object Recognition I LEGO NXT 

Fig. II. The How of the verification model. 

when object lies aside. An improved DS algorithm is developed 

to meet the special requirement of mobile tracking robot. In 

future, the distance estimation model should be developed. It 

will be very good for the robot if it can fitting the distance 

curves at different focal length f and baseline B easily. 

Additionally, simpler and faster search algorithm should be 

developed. Of course, all of these should be realized by cheap 

hardware. 
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